[1]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
点击复制

EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
953
栏目:
论著
出版日期:
2022-10-25

文章信息/Info

Title:
Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis
作者:
曹兴丹12 陈子仪 12 宋小刚 4 张玉秀 3 陈敏 3 汤吉超 4 李萍萍 4 陈永清 3 荆哲4
甘肃中医药大学第一临床医学院,甘肃 兰州 730000;2.中国人民解放军联勤保障部队第九四〇医院基础医学实验室 甘肃省干细胞与基因药物重点实验室,甘肃 兰州 730050;3.甘肃省中心医院心血管内科,甘肃 兰州 730070;4中国人民解放军联勤保障部队第九四〇医院心血管内科,甘肃 兰州 730050)
Author(s):
CAO Xingdan12CHEN Ziyi12SONG Xiaogang4ZHANG Yuxiu3CHEN Min3TANG Jichao4LI Pingping4CHEN Yongqing3JING Zhe4
?1.The First Clinical Medical CollegeGansu University of Traditional Chinese MedicineLanzhou 730000GansuChina2.Laboratory of Preclinical MedicineThe 940th Hospital of Joint Logistics Support Force of Peoples Liberation ArmyKey Laboratory of Stem Cells and Gene Drug of Gansu Province,Lanzhou 730050GansuChina3.Department of Cardiology,Gansu Provincial Central HospitalLanzhou 730070,Gansu4.The 940th Hospital of Joint Logistics Support Force of Peoples Liberation ArmyLanzhou 730050GansuChina)
关键词:
EMRE细胞凋亡心肌细胞糖尿病心肌病
Keywords:
EMREApoptosisCardiomyocytesDiabetic cardiomyopathy
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.020
摘要:
目的 观察 db/db糖尿病小鼠心肌细胞及高糖环境诱导下的H9c2心肌细胞中EMRE分子表达水平的变化,探究EMRE分子的表达变化对糖尿病心肌病心肌细胞凋亡的影响。方法 (1)选取db/db糖尿病小鼠和野生型(WT)小鼠各6只,分别饲养18周,利用蛋白质印迹法、免疫组织化学法及实时荧光定量聚合酶链反应(RT-qPCR)法检测小鼠心肌细胞中EMRE的表达水平;小动物超声仪检测小鼠的心脏功能。(2)将购买来的H9c2心肌细胞随机分为四组,即正常组(NG,培养基中含5.5 mmol/L葡萄糖)、高糖组(HG,培养基中含33 mmol/L葡萄糖)、高糖+阴性对照组(HG+NC siRNA,培养基中含33 mmol/L葡萄糖+阴性对照siRNA)、高糖+转染EMRE组(HG+EMRE siRNA,培养基中含33 mmol/L葡萄糖+转染EMRE siRNA),培养24 h,采用蛋白质印迹法检测四组实验细胞中EMRE、凋亡蛋白caspase-3、Bax、caspase-9、Cyto-c以及凋亡拮抗蛋白MCL-1表达情况;利用流式细胞术检测细胞凋亡水平;ATP检测试剂盒检测各组细胞线粒体中ATP含量;α-酮戊二酸脱氢酶(α-KGDH)活性检测试剂盒检测其活性;活性氧(ROS)检测试剂盒检测各组细胞内ROS水平。结果 (1) 与WT小鼠相比,db/db糖尿病小鼠心肌中EMRE分子表达水平明显升高,左室射血分数、左心室短轴缩短率降低(P<0.01)。(2)与正常组相比,高糖组H9c2心肌细胞EMRE表达升高,蛋白质印迹法检测出caspase-3(P<0.01)、Bax(P<0.01)、caspase-9(P<0.001)和Cyto-c(P<0.001)凋亡蛋白的表达增加,凋亡拮抗蛋白MCL-1的表达下降(P<0.01),心肌细胞凋亡明显增加,线粒体ATP浓度异常减少(P<0.01),同时α-KGDH活性下降(P<0.01),而线粒体ROS生成增加(P<0.01);当下调EMRE表达后,心肌细胞凋亡水平受到明显抑制,心肌细胞线粒体ATP浓度升高(P<0.01),α-KGDH活性升高(P<0.01),ROS水平明显降低(P<0.01)。结论 糖尿病小鼠心肌细胞中EMRE表达水平升高,小鼠心脏收缩功能降低。高糖环境可诱导H9c2心肌细胞EMRE的表达升高,促进心肌细胞凋亡。下调EMRE表达后,心肌细胞的凋亡水平受到抑制。
Abstract:
Objective To observe EMRE expressions change s in cardiomyocytes of diabetic db/db mice and H9c2 cell line induced by high glucose ,and explore the effect on cardiomyocyte apoptosis and the underlying mechanism . Methods Six diabetic (db/db) and 6 wild-type (WT) mice were feeded for 18 weeks respectively. EMRE expressions in myocardial tissues were tested by Western blot ,immunohistochemical staining and RT-qPCR. Cardiac function was detected by small animal Doppler ultrasound. H9c2 cardiomyocytes were randomly divided into normal (NG ,5.5 mmol/L glucose),high glucose (HG,33 mmol/L glucose),high glucose+NC siRNA (HG+siRNA negative control),high glucose+EMRE siRNA group (HG+EMRE siRNA) and cultured for 24 hours. EMRE expressions ,apoptosis protein caspase-3,Bax,caspase-9,Cyto-c and anti-apoptosis protein MCL-1 were detected by Western blot and the apotosis level was tested by flow cytometry. The content of ATP in mitochondria,the activity of α-ketoglutarate dehydrogenase (α-KGDH) and mitochondrial reactive oxygen species (ROS) were respectively measured by ATP detection ,α-KGDH activity detection,and Mito-SOXTM staining kits. Results Compared with WT control group,the EMRE expressions in diabetic db/db mice group were significantly increased ,and left ventricular ejection fraction (LVEF) and short-axis shortening rate (LVFS) were decreased (P<0.01). Western blot showed that the caspase-3(P<0.01),Bax(P<0.001),caspase-9(P<0.001) and Cyto-c(P<0.001) expressions in HG group were up-regulated,MCL-1 down-regulated(P<0.01),cardiomyocytes apoptosis and mitochondrial ROS production increased,the mitochondrial ATP concentration and α-KGDH activity decreased. Once EMRE was down-regulated,the cardiomyocytes apotosis were significantly inhibited,the mitochondrial ATP and α-KGDH activity in cardiomyocytes increased(P<0.01) and mitochondrial ROS decreased (P<0.01). Conclusion The EMRE in cardiomyocytes of diabetic mice were up-regulated with cardiac function inhibited. High glucose may induce EMRE over-expressions and promote apoptosis of H9c2 cardiomyocytes. After EMRE interference ,the cardiomyocytes apoptosis will be suppressed.

参考文献/References:

[1]Cole JB,Florez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol,2020,16(7):377-390.

[2]Henning RJ. Type-2 diabetes mellitus and cardiovascular disease[J]. Future Cardiol,2018,14(6):491-509.

[3]Hong L,Zha Y,Wang C,et al. Folic acid alleviates high glucose and fat-induced pyroptosis via inhibition of the hippo signal pathway on H9C2 cells[J]. Front Mol Biosci,2021,8:698698.

[4]Ingelfinger JR,Jarcho JA. Increase in the incidence of diabetes and its implications[J]. N Engl J Med,2017,376(15):1473-1474.

[5]Schmidt AM. Highlighting diabetes mellitus:the epidemic continues[J]. Arterioscler Thromb Vasc Biol,2018,38(1):e1-e8.

[6]Tate M,Perera N,Prakoso D,et al. Bone morphogenetic protein 7 gene delivery improves cardiac structure and function in a murine model of diabetic cardiomyopathy[J]. Front Pharmacol,2021,12:719290.

[7]Tsai MF,Phillips CB,Ranaghan M,et al.?Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex[J].?Elife,2016,5:e15545.

[8]Demaurex N,Rosselin M. Redox control of mitochondrial calcium uptake[J]. Mol Cell,2017,65(6):961-962.

[9]Shah SI,Ullah G. The function of mitochondrial calcium uniporter at the whole-cell and single mitochondrion levels in WT,MICU1 KO,and MICU2 KO cells[J]. Cells,2020,9(6):1520.

[10]Nemani N,Shanmughapriya S,Madesh M. Molecular regulation of MCU:implications in physiology and disease[J]. Cell Calcium,2018,74:86-93.

[11]Wang C,Baradaran R,Long SB. Structure and reconstitution of an MCU-EMRE mitochondrial Ca2+ uniporter complex[J]. J Mol Biol,2020,432(20):5632-5648.

[12]Cloete L. Diabete mellitus:an overview of the types,symptoms,complications and management[J]. Nurs Stand,2022,37(1):61-66.

[13]Endlicher R,Drahota Z,Ku?era O,et al. Age-dependent changes in the function of mitochondrial membrane permeability transition pore in rat liver mitochondria[J]. Physiol Res,2021,70(6):905-911.

[14]荆哲,刘峰舟,王炜中,等. EMRE对高糖高脂诱导心肌细胞凋亡的影响[J]. 心脏杂志,2016,28(3):285-288.

[15]Singh RM,Waqar T,Howarth FC,et al. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart[J]. Heart Fail Rev,2018,23(1):37-54.

[16]Jia G,Whaley-Connell A,Sowers JR. Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia,2018,61(1):21-28.

[17]Kho C,Lee A,Jeong D,et al. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure[J]. Nat Commun,2015,6:7229.

[18]Kanter JE,Bornfeldt KE. Impact of diabetes mellitus[J]. Arterioscler Thromb Vasc Biol,2016,36(6):1049-1053.

[19]Seferovi? PM,Petrie MC,Filippatos GS,et al. Type 2 diabetes mellitus and heart failure:a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail,2018,20(5):853-872.

[20]Bugger H,Abel ED. Molecular mechanisms of diabetic cardiomyopathy[J]. Diabetologia,2014,57(4):660-671.

[21]Tanwar J,Singh JB,Motiani RK. Molecular machinery regulating mitochondrial calcium levels:The nuts and bolts of mitochondrial calcium dynamics[J]. Mitochondrion,2021,57:9-22.

[22]Ryan KC,Ashkavand Z,Norman KR. The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases[J]. Int J Mol Sci,2020,21(23):9153.

[23]Ferreira JP,Verdonschot J,Collier T,et al. Proteomic bioprofiles and mechanistic pathways of progression to heart failure[J]. Circ Heart Fail,2019,12(5):e005897.

[24]Annesley SJ,Fisher PR. Mitochondria in health and disease[J]. Cells,2019,8(7):680.

[25]Arnoult D,Gaume B,Karbowski M,et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization[J]. EMBO J,2003,22(17):4385-4399.

[26]Kalkavan H,Green DR. MOMP,cell suicide as a BCL-2 family business[J]. Cell Death Differ,2018,25(1):46-55.

[27]Cheung CHA,Chang YC,Lin TY,et al. Anti-apoptotic proteins in the autophagic world:an update on functions of XIAP,Survivin,and BRUCE[J]. J Biomed Sci,2020,27(1):31.

[28]Chakrabarti S,Munshi S,Banerjee K,et al. Mitochondrial dysfunction during brain aging:role of oxidative stress and modulation by antioxidant supplementation[J]. Aging Dis,2011,2(3):242-256.

[29]Chang JY,Yi HS,Kim HW,et al. Dysregulation of mitophagy in carcinogenesis and tumor progression[J]. Biochim Biophys Acta Bioenerg,2017,1858(8):633-640.

[30]Stefanatos R,Sanz A. The role of mitochondrial ROS in the aging brain[J]. FEBS Lett,2018,592(5):743-758.

[31]Slimen IB,Najar T,Ghram A,et al. Reactive oxygen species,heat stress and oxidative-induced mitochondrial damage. A review[J]. Int J Hyperthermia,2014,30(7):513-523.

相似文献/References:

[1]付辉,黄鹤.线粒体功能障碍在心血管疾病中的作用[J].心血管病学进展,2020,(3):306.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.022]
 FU Hui,HUANG He.Role of Mitochondrial Dysfunction in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):306.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.022]
[2]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
 HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[3]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
 ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(10):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
[4]杨帆 吴建军.五味子乙素通过半胱天冬酶凋亡途径对抗高糖诱导的心肌细胞氧化应激损伤[J].心血管病学进展,2022,(2):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
 YANG Fan,WU Jianjun.Sch.B Protects High Glucose-Induced Cardiomyocytes from Oxidative Stress Injury via Caspase Pathway[J].Advances in Cardiovascular Diseases,2022,(10):188.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.022]
[5]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
 GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(10):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
[6]高璐阳 金旗 张毅 李欣 黄志华 章思铖 段安琪 赵智慧 赵青 罗勤 柳志红.PI3K/Akt/FoxO1信号通路对人源肺动脉平滑肌细胞及肺动脉高压大鼠细胞凋亡的影响[J].心血管病学进展,2024,(1):79.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.020]
 GAO Luyang,JIN Qi,ZHANG Yi,et al.Effect of PI3K/Akt/FoxO1 Signaling Pathway on Apoptosis in Human Pulmonary Artery Smooth Muscle Cell and Pulmonary Hypertension Rat[J].Advances in Cardiovascular Diseases,2024,(10):79.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.020]
[7]李铭,高继先,吴冰,等.卡格列净减轻心肌梗死后细胞凋亡及炎症反应改善预后[J].心血管病学进展,2024,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.018]
 LI Ming,GAO Jixian,WU Bing,et al.Canagliflozin alleviates apoptosis and inflammation after myocardial infarction, and improves prognosis[J].Advances in Cardiovascular Diseases,2024,(10):368.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.018]
[8]文江艳 滕藤 唐其柱.黄杞苷减轻H9c2细胞的缺氧再复氧损伤[J].心血管病学进展,2024,(6):566.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.020]
 WEN Jiangyan,TENG Teng,TANG Qizhu.Engeletin Alleviates Hypoxia Reoxygenation Injury in H9c2 Cells[J].Advances in Cardiovascular Diseases,2024,(10):566.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.020]
[9]郭红豆 蒋凌 罗顺祥 陈甘潇 林佳仪 林奕帆 徐尚华.小白菊内酯对多柔比星诱导的H9c2心肌细胞损伤保护作用的相关机制研究[J].心血管病学进展,2024,(7):666.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.019]
 GUO HongdouJIANG Lin,LUO Shunxiang,CHEN Ganxiao,et al.Study on the Protective Effects and Mechanisms of Parthenolide Against Doxorubicin-Induced H9c2 Cardiomyocyte Injury[J].Advances in Cardiovascular Diseases,2024,(10):666.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.019]

更新日期/Last Update: 2022-12-26