[1]张文珺 牛小伟 刘永铭.m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展[J].心血管病学进展,2022,(1):44-47.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
 ZHANG Wenjun,NIU Xiaowei,LIU Yongming.m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(1):44-47.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
点击复制

m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年1期
页码:
44-47
栏目:
出版日期:
2022-01-25

文章信息/Info

Title:
m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction
作者:
张文珺1 牛小伟 2 刘永铭 3
(1.兰州大学第一临床医学院,甘肃 兰州 730000;2.兰州大学第一医院心内科,甘肃 兰州 730000;3.兰州大学第一医院老年病科,甘肃 兰州 730000)
Author(s):
ZHANG Wenjun1NIU Xiaowei2LIU Yongming3
(1.The First Clinical Medical College of Lanzhou University,Lanzhou 730000,Gansu,China2.Department of Cardiology,The First Hospital of Lanzhou University,Lanzhou 730000,Gansu,China; 3.Department of Geriatric Medicine,The First Hospital of Lanzhou University,Lanzhou 730000,Gansu,China)
关键词:
N6-甲基腺嘌呤表观遗传学甲基化射血分数保留性心力衰竭
Keywords:
N6-methyladenosineEpigeneticsMethylationHeart failure with preserved ejection fraction
DOI:
10.16806/j.cnki.issn.1004-3934.2022.01.012
摘要:
表观遗传学参与心血管疾病进展的过程。近年研究表明,射血分数保留性心力衰竭(HFpEF)患者的多个基因转录本存在N6-甲基腺嘌呤(m6A)水平的改变。现介绍m6A及其调节因子(甲基化酶、去甲基化酶和甲基化阅读蛋白)与HFpEF的关系,说明m6A可能通过影响心肌肥厚与纤维化、细胞自噬、炎症与氧化应激、糖脂代谢参与HFpEF的发生和发展,以期为HFpEF的治疗靶点提供新的研究方向。
Abstract:
Epigenetics is involved in the progression of cardiovascular disease. Recent studies have shown that there are changes in the level of N6 methyladenosine(m6A) in multiple gene transcripts in patients with heart failure with preserved ejection fraction(HFpEF). This article introduces the relationship between m6A and its regulators(methylase,demethylase,methylated reading protein) and HFpEF,indicating that m6A may participate in the occurrence and development of HFpEF by affecting myocardial hypertrophy and fibrosis,autophagy,inflammation and oxidative stress,glucose and lipid metabolism,in order to provide a new research direction for the therapeutic target of HFpEF.

参考文献/References:

[1]Hamdani N,Costantino S,Mügge A,et al. Leveraging clinical epigenetics in heart failure with preserved ejection fraction:a call for individualized therapies[J]. Eur Heart J,2021,42(20):1940-1958.

[2]Qin Y,Li L,Luo E,et al. Role of m6A RNA methylation in cardiovascular disease(Review)[J]. Int J Mol Med,2020,46 (6):1958-1972.

[3]Zhao K,Yang CX,Li P,et al. Epigenetic role of N6-methyladenosine(m6A) RNA methylation in the cardiovascular system[J]. J Zhejiang Univ Sci B,2020,21(7):509-523.

[4]Berulava T,Buchholz E,Elerdashvili V,et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation[J]. Eur J Heart Fail,2020,22(1):54-66.

[5]Hinger SA,Wei J,Dorn LE,et al. Remodeling of the m6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol,2021,151:46-55.

[6]Zhang B,Xu Y,Cui X,et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction[J]. Front Cardiovasc Med,2021,8:647806.

[7]Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction:comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.

[8]Dorn LE,Lasman L,Chen J,et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation,2019,139(4):533-545.

[9]Gao XQ,Zhang YH,Liu F,et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA[J]. Nat Cell Biol,2020,22(11):1319-1331.

[10]Shen W,Li H,Su H,et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt[J]. Mol Cell Biochem,2021,476(5):2171-2179.

[11]Longenecker JZ,Gilbert CJ,Golubeva VA,et al. Epitranscriptomics in the heart:a focus on m6A [J]. Curr Heart Fail Rep,2020,17(5):205-212.

[12]Chen YS,Ouyang XP,Yu XH,et al. N6-Adenosine methylation(m6A) RNA modification:an emerging role in cardiovascular diseases[J]. J Cardiovasc Transl Res,2021,14(5):857-872.

[13]Li X,Yang Y,Chen S,et al. Epigenetics-based therapeutics for myocardial fibrosis[J]. Life Sci,2021,271:119186.

[14]Mathiyalagan P,Adamiak M,Mayourian J,et al. FTO-dependent N6 -methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation,2019,139 (4):518-532.

[15]Yang HJ,Kong B,Shuai W,et al. MD1 deletion exaggerates cardiomyocyte autophagy induced by heart failure with preserved ejection fraction through ROS/MAPK signalling pathway[J]. J Cell Mol Med,2020,24(16):9300-9312.

[16]Song H,Feng X,Zhang H,et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA,which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy,2019,15(8):1419-1437.

[17]Jin S,Zhang X,Miao Y,et al. m6A RNA modification controls autophagy through upregulating ULK1 protein abundance[J]. Cell Res,2018,28(9):955-957.

[18]Komal S,Zhang LR,Han SN. Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases[J]. Biomed Pharmacother,2021,137:111376.

[19]Huangfu N,Zheng W,Xu Z,et al. RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis[J]. Int Immunopharmacol,2020,83:106432.

[20]Yu R,Li Q,Feng Z,et al. m6A reader YTHDF2 regulates LPS-induced inflammatory response[J]. Int J Mol Sci,2019,20(6):1323.

[21]Raffin C,Vo LT,Bluestone JA. Treg cell-based therapies:challenges and perspectives[J]. Nat Rev Immunol,2020,20(3):158-172.

[22]Tong J,Cao G,Zhang T,et al. m6A mRNA methylation sustains Treg suppressive functions[J]. Cell Res,2018,28(2):253-256.

[23]van der Pol A,Gil A,Tromp J,et al. OPLAH ablation leads to accumulation of 5-oxoproline,oxidative stress,fibrosis,and elevated fillings pressures:a murine model for heart failure with a preserved ejection fraction[J]. Cardiovasc Res,2018,114(14):1871-1882.

[24]Ibá?ez B,Heusch G,Ovize M,et al. Evolving therapies for myocardial ischemia/reperfusion injury [J]. J Am Coll Cardiol,2015,65(14):1454-1471.

[25]Chen X,Yu C,Guo M,et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death[J]. ACS Chem Neurosci,2019,10(5):2355-2363.

[26]Xie W,Ma LL,Xu YQ,et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun,2019,518(1):120-126.

[27]Mo X,Lei S,Zhang Y,et al. Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci [J]. Pharmacogenomics J,2019,19(4):347-357.

[28]Hu Y,Feng Y,Zhang L,et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J]. RNA Biol,2020,17(7):930-942.

[29]Tromp J,Westenbrink BD,Ouwerkerk W,et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction[J]. J Am Coll Cardiol,2018,72(10):1081-1090.

相似文献/References:

[1]陈炜,许贞蓉.表观遗传学与代谢性心血管疾病的研究进展[J].心血管病学进展,2019,(6):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
 CHEN Wei,XU Zhenrong.Epigenetics and Cardiometabolic Disease[J].Advances in Cardiovascular Diseases,2019,(1):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
[2]傅义程 张福春 刘慧琳.表观遗传年龄与衰老和心血管疾病的研究进展[J].心血管病学进展,2022,(7):590.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 FU Yicheng,ZHANG Fuchun,LIU Huilin.Epigenetic Age with Senescence and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(1):590.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[3]郭梦阳 王守富 邢冬梅.DNA甲基化与原发性高血压关系研究进展[J].心血管病学进展,2023,(7):631.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.013]
 GUO Mengyang,WANG Shoufu,XING Dongmei.Relationship Between DNA Methylation and Essential Hypertension[J].Advances in Cardiovascular Diseases,2023,(1):631.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.013]

更新日期/Last Update: 2022-02-17