参考文献/References:
[1] Andratschke N,Maurer J,Molls M,et al. Late radiation-induced heart disease after radiotherapy. Clinical importance,radiobiological mechanisms and strategies of prevention[J]. Radiother Oncol,2011,100(2):160-166.
[2] Baker JE,Moulder JE,Hopewell JW. Radiation as a risk factor for cardiovascular disease[J]. Antioxid Redox Signal,2011,15(7):1945-1956.
[3] Tapio S. Using proteomics to explore the effects of radiation on the heart - impacts for medicine[J]. Expert Rev Proteomics,2017,14(4):277-279.
[4] Seemann I,Gabriels K,Visser NL,et al. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature[J]. Radiother Oncol,2012,103(2):143-150.
[5] Darby SC,Cutter DJ,Boerma M,et al. Radiation-related heart disease:current knowledge and future prospects[J]. Int J Radiat Oncol Biol Phys,2010,76(3):656-665.
[6] Preidl RHM,M?bius P,Weber M,et al. Long-term endothelial dysfunction in irradiated vessels:An immunohistochemical analysis[J]. Strahlenther Onkol,2019,195(1):52-61.
[7] Mathias D,Mitchel RE,Barclay M,et al. Low-dose irradiation affects expression of inflammatory markers in the heart of ApoE-/-mice[J]. PLoS One,2015,10(3):e0119661.
[8] Patties I,Haagen J,D?rr W,et al. Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice[J]. Strahlenther Onkol,2015,191(2):172-179.
[9] Baselet B,Sonveaux P,Baatout S,et al. Pathological effects of ionizing radiation:endothelial activation and dysfunction[J]. Cell Mol Life Sci,2019,76(4):699-728.
[10] Baselet B,Belmans N,Coninx E,et al. Functional gene analysis reveals cell cycle changes and inflammation in endothelial cells irradiated with a single X-ray dose[J]. Front Pharmacol,2017,8:213.
[11] Azimzadeh O,Sievert W,Sarioglu H,et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction[J]. J Proteome Res,2015,14(2):1203-1219.
[12] Hildebrandt G,Maggiorella L,R?del F,et al. Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro[J]. Int J Radiat Biol,2002,78(4):315-325.
[13] Kern PM,Keilholz L,Forster C,et al. Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro[J]. Radiother Oncol,2000,54(3):273-282.
[14] Subramanian V,Seemann I,Merl-Pham J,et al. Role of TGF beta and PPAR alpha signaling pathways in radiation response of locally exposed heart:integrated global transcriptomics and proteomics analysis[J]. J Proteome Res,2017,16(1):307-318.
[15] Sniegon I,Prie? M,Heger J,et al. Endothelial mesenchymal transition in hypoxic microvascular endothelial cells and paracrine induction of cardiomyocyte apoptosis are mediated via TGFβ1/SMAD signaling[J]. Int J Mol Sci,2017,18(11):2290.
[16] Soroush F,Tang Y,Zaidi HM,et al. PKCδ inhibition as a novel medical countermeasure for radiation-induced vascular damage[J].FASEB J,2018,32(12):6436-6344.
[17] Christersdottir T,Pirault J,Gister? A,et al. Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade[J]. Eur Heart J,2019,40(30):2495-2503.
[18] Chen B,Lu Y,Chen Y,et al. The role of Nrf2 in oxidative stress-induced endothelial injuries[J]. J Endocrinol,2015,225(3):R83-R99.
[19] Bohlen HG. Nitric oxide and the cardiovascular system[J]. Compr Physiol,2011,5(2):803-828.
[20] Zhang ZY,Li Y,Li R,et al. Tetrahydrobiopterin protects against radiation-induced growth inhibition in H9c2 cardiomyocytes[J]. Chin Med J(Engl),2016,129(22):2733.
[21] Pathak R,Cheema AK,Boca SM,et al. Modulation of radiation response by the tetrahydrobiopterin pathway[J]. Antioxidants,2015,4(1):68-81.
[22] Nagane M,Yasui H,Sakai Y,et al. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway[J]. Biochem Biophys Res Commun,2015,456(1):541-546.
[23] Leucker TM,Ge ZD,Procknow J,et al. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury[J]. PloS one,2013,8(7):e70088.
[24] Guillonneau M,Paris F,Dutoit S,et al. Oxidative stress disassembles the p38/NPM/PP2A complex,which leads to modulation of nucleophosmin-mediated signaling to DNA damage response[J]. FASEB J,2016,30(8):2899-2914.
[25] Lafargue A,Degorre C,Corre I,et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation[J]. Free Radic Biol Med,2017,108:750-759.
[26] Hu S,Gao Y,Zhou H,et al. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray[J]. Int J Radiat Biol,2017,93(5):470-476.
[27] Ribeiro-Rodrigues TM,Laundos TL,Pereira-Carvalho R,et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis[J]. Cardiovasc Res,2017,113(11):1338-1350.
[28] Davidson SM,Takov K,Yellon DM. Exosomes and cardiovascular protection[J]. Cardiovasc Drugs Ther,2017,31(1):77-86.
[29] Wang Y,Zhao R,Liu W,et al. Exosomal circHIPK3 Released from Hypoxia-Pretreated Cardiomyocytes Regulates Oxidative Damage in Cardiac Microvascular Endothelial Cells via the miR-29a/IGF-1 Pathway[J]. Oxid Med Cell Longev,2019,2019:7954657.
[30] Venkatesulu BP,Mahadevan LS,Aliru ML,et al. Radiation-induced endothelial vascular injury:a review of possible mechanisms[J]. JACC Basic Transl Sci,2018,3(4):563-572.
[31] Yentrapalli R,Azimzadeh O,Sriharshan A,et al. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation[J]. PloS one,2013,8(8):e70024.
[32] Dong X,Tong F,Qian C,et al. NEMO modulates radiation-induced endothelial senescence of human umbilical veins through NF-κB signal pathway[J]. Radiat Res,2015,183(1):82-93.
[33] Philipp J,Azimzadeh O,Subramanian V,et al. Radiation-induced endothelial inflammation is transferred via the secretome to recipient cells in a STAT-Mediated Process[J]. J Proteom Res,2017,16(10):3903-3916.
[34] Heo JI,Kim KI,Woo SK,et al. Stromal cell-derived factor 1 protects brain vascular endothelial cells from radiation-induced brain damage[J]. Cells,2019,8(10):1230.
[35] Stewart FA,Heeneman S,Te Poele J,et al. Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE?/? mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage [J].Am J Pathol,2006,168(2):649-658.
[36] Jang H,Kwak SY,Park S,et al. Pravastatin alleviates radiation proctitis by regulating thrombomodulin in irradiated endothelial cells[J]. Int J Mol Sci,2020,21(5):1897.
[37] Wu R,Zeng Y. Does angiotensin Ⅱ–aldosterone have a role in radiation-induced heart disease?[J]. Med Hypotheses,2009,72(3):263-266.
[38] Ferreira-Machado SC,Rocha NDN,Mencalha AL,et al. Up-regulation of angiotensin-converting enzyme and angiotensin Ⅱ type 1 receptor in irradiated rats[J]. Int J Radiat Biol,2010,86(10):880-887.
[39] Korystova A,Kublik L,Levitman MK,et al. Ionizing radiation enhances activity of angiotensin-converting enzyme in rat aorta[J]. Bull Exp Biol Med,2018,165(2):216-219.
[40] Kim YA,Korystova AF,Kublik LN,et al. Flavonoids decrease the radiation-induced increase in the activity of the angiotensin-converting enzyme in rat aorta[J]. Eur J Pharmacol,2018,837:33-37.