参考文献/References:
[1] Lee G,Fujita H . Deep learning in medical image analysis: challenges and applications[M]. Springer Nature,2020,1213:18-19.
[2] Lin S,Li Z,Fu B,et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo[J].?Eur Heart J,2020,41(46):4400-4411.
[3] Avram R,Olgin JE,Kuhar P,et al. A digital biomarker of diabetes from smartphone-based vascular signals[J].?Nat Med,2020,26(10):1576-1582.
[4] Srinivasan S,Greenspan RJ,Stevens CF,et al. Deep(er) Learning[J].J Neurosci,2018,38(34):7365-7374.
[5] LeCun Y,Bengio Y,Hinton G. Deep learning[J]. Nature,2015,521(7553):436–444.
[6] Kolossváry M,de Cecco CN,Feuchtner G,et al. Advanced atherosclerosis imaging by CT: Radiomics,machine learning and deep learning[J]. J Cardiovasc Comput Tomogr,2019,13(5):274-280.
[7] Lundervold AS,Lundervold A. An overview of deep learning in medical imaging focusing on MRI[J]. Z Med Phys,2019,29(2):102-127.
[8] Gandhi S,Mosleh W,Shen J,et al. Automation,machine learning,and artificial intelligence in echocardiography: A brave new world. Echocardiography[J]. 2018,35(9):1402-1418.
[9] Khatibi T,Rabinezhadsadatmahaleh N. Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection[J]. Phys Eng Sci Med,2020,43:49-68.
[10]Kusunose K. Radiomics in echocardiography: deep learning and echocardiographic analysis[J]. Curr Cardiol Rep,2020,22(9):89.
[11] Rawat W,Wang Z. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Comput,2017,29(9):2352-2449.
[12] Schwendicke F,Golla T,Dreher M,et al. Convolutional neural networks for dental image diagnostics:a scoping review[J]. J Dent,2019,99(7):769-774.
[13] Tatsugami F,Higaki T,Nakamura Y,et al. Deep learning–based image restoration algorithm for coronary CT angiography[J]. Eur Radiol,2019,29(10):5322-5329.
[14] Bruns S,Wolterink JM,Takx RAP,et al. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT[J].Med Phys,2020,47(10):5048-5060.
[15] 蒋建慧,姚静,张艳娟,等.基于深度学习的超声自动测量左室射血分数的研究[J].临床超声医学杂志,2019,021(1):70-74.
[16] Kusunose K,Abe T,Haga A,et al.A Deep learning approach for assessment of regional wall motion?abnormality from echocardiographic images[J]. JACC Cardiovasc Imaging,2020,13(2 Pt 1):374-381.
[17]Zhang,J,Gajjala S,Agrawal P,et al. Fully automated echocardiogram interpretation in clinical practice feasibility and diagnostic accuracy[J]. Circulation,2018,138(16):1623-1635.
[18] Liu W,Wang F,Huang Q,et al. MFB-CBRNN: a hybrid network for MI detection using 12-lead ECGs[J]. IEEE J Biomed Health Inform,2020,24(2):503-514.
[19]Siontis KC,Yao X,Pirruccello JP,et al. How will machine learning inform the clinical care of atrial fibrillation? [J].?Circ Res,2020,127(1):155-169.
[20] Belo D,Bento N,Silva H,et al. ECG biometrics using deep learning and relative score threshold classification[J].?Sensors (Basel),2020,20(15):4078.
[21] Zhao Z, Liu C, Li Y,et al. Noise rejection for wearable ECGs using modified frequency slice wavelet transform and convolutional neural networks [J]. IEEE Access,2019,7(1): 34060-34067.
[22] Zhao L,Liu C,Wei S,et al.Enhancing detection accuracy for clinical heart failure utilizing pulse transit time variability and machine learning[J]. IEEE Access,2019,7(1):17716-17724.
[23] Huang J,Chen B,Yao B,et al.ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network[J]. IEEE Access,2019,7(1): 92871-92880.
[24] Wo?k K,Wo?k A.Early and remote detection of possible heartbeat problems with convolutional neural networks and multipart interactive training[J]. IEEE Access,2019,7(1):145921-145927.
[25] Khatibi T,Rabinezhadsadatmahaleh N. Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection[J]. Australas Phys Eng Sci Med,2020,43(1):49-68.
[26]Wang P,Hou B,Shao S,et al. ECG arrhythmias detection using auxiliary classifier generative adversarial network and residual network[J]. IEEE Access,2019,7(99):100910-100922.
[27] Poldervaart JM,Langedijk M,Backus BE,et al. Comparison of the GRACE,HEART and TIMI score to predict major adverse cardiac events in chest pain patients at the emergency department[J]. Int J Cardiol,2017,227:656-661.
[28] Kwon J,Jeon K,Kim HM,et al. Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction[J]. PLoS One,2019,14(10): e0224502.
[29] Huo D,Kou B,Zhou Z,et al. A machine learning model to classify aortic dissection patients in the early diagnosis phase[J]. Sci Rep,2019,9(1):1-8.
[30]Santos-Ferreira C,Baptista R,Oliveira-Santos M,et al.A 10- and 15-year performance analysis of ESC/EAS and ACC/AHA cardiovascular risk scores in a Southern European cohort[J]. BMC Cardiovasc Disord,2020,20(1):301.
[31] Wu CC,Hsu WD,Islam MM,et al. An artificial intelligence approach to early predict non-ST-elevation myocardial infarction patients with chest pain[J]. Comput Methods Programs Biomed,2019,173:109-117.
[32] Kwon JM,Kim KH,Jeon KH,et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure[J].PLoS One,2019,14(7):e0219302
[33] Zack CJ, Senecal C, Kinar Y,et al. Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention[J]. JACC Cardiovasc Interv,2019,12(14):1304-1311.
[34] Commandeur F,Slomka PJ,Goeller M,et al.Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk,coronary calcium,and epicardial adipose tissue: a prospective study[J]. Cardiovasc Res,2020,116(14):2216-2225.?
[35] Novak R,Xiao L,Hron J,et al. Neural tangents: fast and easy infinite neural networks in python[C]. Seattle:International conference on learning representations, arXiv,2020.
相似文献/References:
[1]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[2]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(6):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[3]凯赛尔江·卡地尔 艾克力亚尔·艾尼瓦尔 秦练 热娜·热合木丁 马翔.深度学习在冠心病影像学诊断的研究进展[J].心血管病学进展,2022,(4):335.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.012]
Kaisaierjiang Kadier,Aikeliyaer Ainiwae,rQIN Lian,et al.Deep Learning in Imaging Diagnosis of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2022,(6):335.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.012]
[4]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[5]秦地茂 李梦依 吴霜 邓祁 姚尧 刘英杰 郑颖.人工智能在心房颤动预测中的价值[J].心血管病学进展,2022,(10):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
QIN Dimao,LI Mengyi,WU Shuang,et al.Artificial Intelligence for Predicting Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(6):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
[6]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(6):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[7]屈展 刘凯.人工智能技术在高血压诊疗中的应用进展[J].心血管病学进展,2023,(1):48.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
QU Zhan,LIU Kai.Applications of Artificial Intelligence for Hypertension Management[J].Advances in Cardiovascular Diseases,2023,(6):48.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]