[1]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
点击复制

线粒体动力学异常与相关心血管疾病()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年2期
页码:
162
栏目:
综述
出版日期:
2021-02-25

文章信息/Info

Title:
Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases
作者:
宋元秀 崔鸣
 (北京大学第三医院心血管内科,北京 100191)
Author(s):
SONG YuanxiuCUI Ming
 (Department of Cardiology ,Peking University Third Hospital,Beijing 100191,China)
关键词:
线粒体动力学扩张型心肌病缺血再灌注损伤脓毒性心肌病糖尿病心肌病动脉粥样硬化
Keywords:
Mitochondrial dynamicsDilated cardiomyopathyIschemia-reperfusion injurySeptic-induced cardiomyopathyDiabetic cardiomyopathyAtherosclerosis
DOI:
10.16806/j.cnki.issn.1004-3934.2020.02.017
摘要:
线粒体是心肌能量代谢的主要场所,其通过分裂和融合的动态平衡维持正常的形态和功能。线粒体分裂和融合的动态转换称为线粒体动力学,受线粒体融合和分裂相关蛋白等多种蛋白调控。线粒体动力失衡可引起心脏结构和功能的紊乱,参与扩张型心肌病、缺血再灌注损伤、脓毒性心肌病、糖尿病心肌病和动脉粥样硬化等心血管疾病的发生和发展。维持线粒体动力平衡可作为治疗这些疾病的新靶点。现综述线粒体分裂和融合的机制及其失衡对相关心血管疾病的影响。
Abstract:
Mitochondria is the main site of energy metabolism in myocardium,which maintains normal morphology and function through the dynamic balance of division and fusion. The dynamic transformation of mitochondrial division and fusion is called mitochondrial dynamics,which is regulated by mitochondrial fusion-related proteins,and division-related proteins and other proteins. The imbalance of mitochondrial dynamics can cause disorders of cardiac structure and function,and participate in the occurrence and development of cardiovascular diseases such as dilated cardiomyopathy,ischemia-reperfusion injury,septic-induced cardiomyopathy, diabetic cardiomyopathy and atherosclerosis. Maintaining mitochondrial dynamic balance can be a new target for the treatment of these diseases. This article reviews the impact of mitochondrial dynamics imbalance on heart function and its relationship with some heart diseases.

参考文献/References:

[1] Vasquez-Trincado C,Garcia-Carvajal I,Pennanen C,et al. Mitochondrial dynamics, mitophagy and cardiovascular disease[J]. J Physiol,2016,594(3):509-525.

[2] Mishra P,Chan DC. Metabolic regulation of mitochondrial dynamics[J]. J Cell Biol, 2016,212(4):379-387.

[3] Murphy MP,Hartley RC,Mitochondria as a therapeutic target for common pathologies[J]. Nat Rev Drug Discov,2018,17(12):865-886.

[4] Dorn GW 2nd,Vega RB,Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart[J]. Genes Dev,2015,29(19):1981-1991.

[5] Huang P,Galloway CA,Yoon Y. Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins[J]. PLoS One,2011,6(5):e20655.

[6] Chen L,Gong Q,Stice JP,et al. Mitochondrial OPA1,apoptosis,and heart failure [J]. Cardiovasc Res,2009,84(1):91-99.

[7] Wu B,Li J,Ni H,et al. TLR4 activation promotes the progression of experimental autoimmune myocarditis to dilated cardiomyopathy by inducing mitochondrial dynamic imbalance[J]. Oxid Med Cell Longev,2018,2018:3181278.

[8] Ashrafian H,Docherty L,Leo V,et al. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy[J]. PLoS Genet,2010,6(6):e1001000.

[9] Chen H,Ren S,Clish C,et al. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy[J]. J Cell Biol,2015,211(4):795-805.

[10] Marechal X,Montaigne D,Marciniak C,et al. Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics[J]. Clin Sci(Lond),2011,121(9):405-413.

[11] Xia Y,Chen Z,Chen A,et al. LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy[J]. J Mol Cell Cardiol,2017,108:138-148.

[12] Kasahara A,Cipolat S,Chen Y,et al. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling[J]. Science,2013,342(6159): 734-737.

[13] Brady NR,Hamacher-Brady A,Gottlieb RA. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury,a study employing cardiac HL-1 cells and GFP biosensors[J]. Biochim Biophys Acta,2006,1757(5-6): 667-678.

[14] Anzell AR,Maizy R,Przyklenk K,et al. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury[J]. Mol Neurobiol,2018,55(3): 2547-2564.

[15] Ong SB,Subrayan S,Lim SY,et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury[J]. Circulation,2010,121(18): 2012-2022.

[16] Disatnik MH,Ferreira JC,Campos JC,et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction[J]. J Am Heart Assoc,2013,2(5):e000461.

[17] Din S,Mason M,Volkers M,et al. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation[J]. Proc Natl Acad Sci U S A,2013,110(15):5969-5974.

[18] Sharp WW,Fang YH,Han M,et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury:therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission[J]. FASEB J,2014, 28(1):316-326.

[19] Cheng QQ,Wan YW,Yang WM,et al. Gastrodin protects H9c2 cardiomyocytes against oxidative injury by ameliorating imbalanced mitochondrial dynamics and mitochondrial dysfunction[J]. Acta Pharmacol Sin,2020,41(10):1314-1327.

[20] Dai SH,Wu QC,Zhu RR,et al. Notch1 protects against myocardial ischaemia-reperfusion injury via regulating mitochondrial fusion and function [J]. J Cell Mol Med,2020,24(5):3183-3191.

[21] Maneechote C,Palee S,Kerdphoo S,et al. Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury[J]. Clin Sci (Lond),2019,133(3):497-513.

[22] Hall AR,Burke N,Dongworth RK,et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction[J]. Cell Death Dis,2016,7:e2238.

[23] Jeong HS,Lee TH,Bang CH,et al. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock:a comparative retrospective study[J]. Medicine (Baltimore),2018,97(13): e0263.

[24] Shang X,Li J,Yu R,et al. Sepsis-related myocardial injury is associated with Mst1 upregulation,mitochondrial dysfunction and the Drp1/F-actin signaling pathway[J]. J Mol Histol,2019,50(2):91-103.

[25] Riba A,Deres L,Eros K,et al. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure[J]. PLoS One,2017, 12(4):e0175195.

[26] Lautz AJ,Zingarelli B. Age-dependent myocardial dysfunction in critically ill patients:role of mitochondrial dysfunction[J]. Int J Mol Sci,2019,20(14):3523.

[27] Preau S,Delguste F,Yu Y,et al. Endotoxemia Engages the RhoA Kinase Pathway to Impair Cardiac Function By Altering Cytoskeleton,Mitochondrial Fission,and Autophagy[J]. Antioxid Redox Signal,2016,24(10):529-542.

[28] Tan Y,Ouyang H,Xiao X,et al.Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway[J]. Cell Stress Chaperones,2019,24(3):595-608.

[29] Haileselassie B,Mukherjee R,Joshi AU,et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J]. J Mol Cell Cardiol,2019, 130:160-169.

[30] Makino A,Suarez J,Gawlowski T,et al. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes[J]. Am J Physiol Regul Integr Comp Physiol,2011,300(6):R1296-1302.

[31] Ding M,Feng N,Tang D,et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1alpha pathway[J]. J Pineal Res, 2018,65(2):e12491.

[32] Forte M,Schirone L,Ameri P,et al. The role of mitochondrial dynamics in cardiovascular diseases[J]. Br J Pharmacol,2020 Apr 15,DOI:10.1111/bph.15068. Epub ahead of print.

[33] Shenouda SM,Widlansky ME,Chen K,et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus[J]. Circulation, 2011,124(4):444-453.

[34] Wang Q,Zhang M,Torres G,et al. Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission[J]. Diabetes,2017,66(1):193-205.

[35] Rogers MA,Maldonado N,Hutcheson JD,et al. Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress[J]. Circ Res,2017,121(3):220-233.

[36] Lim S,Lee SY,Seo HH,et al. Regulation of mitochondrial morphology by positive feedback interaction between PKCdelta and Drp1 in vascular smooth muscle cell [J]. J Cell Biochem,2015,116(4):648-660.

相似文献/References:

[1]张颖雪,赵新湘,孙勇.心脏磁共振成像技术在扩张型心肌病中的应用及研究进展[J].心血管病学进展,2016,(1):74.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.019]
 ZHANG Yingxue,ZHAO Xinxiang,SUN Yong.Application and Research Progress of Cardiac Magnetic Resonance Imaging in Dilated Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(2):74.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.019]
[2]吴琼,杨爱玲,周端,等.扩张型心肌病左室逆重构的研究进展[J].心血管病学进展,2019,(6):885.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.012]
 WU Qiong,YANG Ailing,ZHOU Duan,et al.Left Ventricular Reverse Remodeling in Dilated Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(2):885.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.012]
[3]刘超 曲杰 王明娟 徐倩 范彦芳 周晓慧 单伟超.肺动脉高压对扩张型心肌病预后的影响[J].心血管病学进展,2020,(4):424.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.023]
 LIU ChaoQU JieWANG MingjuanXU QianFAN YanfangZHOU XiaohuiSAN Weichao.The Effect of Pulmonary Hypertension on the Prognosis of Dilated Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(2):424.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.023]
[4]梁科研 杨芳 褚静洁.四维超声心动图评价扩张型心肌病右心室整体收缩功能及其临床意义[J].心血管病学进展,2020,(5):547.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.025]
 LIANG Keyan,YANG Fang,CHU Jingjie.Four-dimensional Echocardiography for Evaluation of Right Ventricular Systolic Function in Dilated Cardiomyopathy and Its Clinical Significance[J].Advances in Cardiovascular Diseases,2020,(2):547.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.025]
[5]唐毅 唐艺金 黄培 杨小燕 张翼 彭建强 郑昭芬 王银珍.人附睾蛋白4对扩张型心肌病患者短期预后评估的价值[J].心血管病学进展,2021,(11):1052.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
 TANG Yi,TANG Yijin,HANG Pei,et al.The Value of Human Epididymal Protein 4 in Assessment of Short-Term Prognosis of Patients with Dilated Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(2):1052.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
[6]王一硕 罗皓文 王晨旭 孙路轩 阿如汗 张茵 常盼.线粒体动力学在糖尿病心肌病中的研究进展[J].心血管病学进展,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
 WANG Yishuo LUO Haowen WANG Chenxu SUN Luxuan AruhanZHANG Yin CHANG Pan.Mitochondrial Dynamics in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(2):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
[7]鄢文婷 黄愿 王刚 李燕玲 谢萍.线粒体功能障碍与放射性心脏损伤的研究进展[J].心血管病学进展,2024,(6):557.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.018]
 YAN Wenting,HUANG Yuan,WANG Gang,et al.Mitochondrial Dysfunction and Radiation -Induced Heart Disease[J].Advances in Cardiovascular Diseases,2024,(2):557.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.018]

更新日期/Last Update: 2021-06-16