[1]杜冲 韦文 李亚飞 王连生.心肌梗死后心肌细胞内源再生的研究进展[J].心血管病学进展,2020,(4):395-398.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.017]
 DU Chong,WEI Tianwen,LI Yafei,et al.Endogenous Regeneration of Myocardial Cells after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(4):395-398.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.017]
点击复制

心肌梗死后心肌细胞内源再生的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年4期
页码:
395-398
栏目:
综述
出版日期:
2020-04-25

文章信息/Info

Title:
Endogenous Regeneration of Myocardial Cells after Myocardial Infarction
作者:
杜冲 韦文 李亚飞 王连生
(南京医科大学第一附属医院心内科,江苏 南京210000)
Author(s):
DU Chong WEI Tianwen LI Yafei WANG Liansheng
( Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000,Jiangsu,China)
关键词:
心肌梗死心肌细胞内源再生机制
Keywords:
Myocardial infarction Cardiomyocyte Endogenous regeneration Mechanism
DOI:
10.16806/j.cnki.issn.1004-3934.2020.04.017
摘要:
成年哺乳动物心脏在心肌梗死后很难再生修复,瘢痕组织的替代会导致心功能的恶化。探索心肌再生的机制并进行可能的临床应用是极其必要的。随着对新生小鼠后心肌再生机制的研究,越来越多的证据表明再生极有可能是由心肌细胞内源增殖引起的,并探索出细胞周期因子等可能的机制。对内源心肌再生的最新研究进展进行综述,初步引入分子开关模,并讨论可能的治疗靶点和未来的研究方向。
Abstract:
The adult mammalian heart is difficult to regenerate after myocardial infarction, which inevitably leads to deterioration of cardiac function. Therefore, it is necessary to explore the mechanism of myocardial regeneration in the neonates and make available clinical application. With the deep research on the mechanisms of myocardial regeneration in neonatal mice, more and more evidences show that myocardial regeneration is probably caused by endogenous proliferation, and a number of mechanisms are involved in the process, including cell cycle regulators, and others. In this paper, we review the latest research on endogenous myocardial regeneration, introduce the "molecular switch model" preliminarily and discuss the available therapeutic targets and future research directions.

参考文献/References:

参 考 文 献
[1] 沈佳楠,景宏美. 心肌梗死后存活心肌的评估[J]. 心血管病学进展,2017,38(6):668-672.
[2] Chien KR,Frisen J,Fritsche-Danielson R,et al. Regenerating the field of cardiovascular cell therapy[J]. Nat Biotechnol,2019,37(3):232-237.
[3] Li M, Izpisua Belmonte JC. Mending a Faltering Heart[J]. Circ Res,2016,118(2):344-395.
[4] Polizzotti BD,Ganapathy B,Kuhn B,et al. A cryoinjury model in neonatal mice for cardiac translational and regeneration research[J]. Nat Protoc,2016,11(3):542-594.
[5] Aksoz M,Turan RD,Albayrak E,et al. Emerging roles of meis1 in cardiac regeneration,stem cells and cancer[J]. Curr Drug Targets,2018,19(2):181-190.
[6] Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish[J]. Science,2002,298(5601):2188-2278.
[7] Yester JW, Kuhn B.Mechanisms of Cardiomyocyte Proliferation and differentiation in development and regeneration[J]. Curr Cardiol Rep,2017,19(2):13-26.
[8] Hashmi S,Ahmad HR. Molecular switch model for cardiomyocyte proliferation[J]. Cell Regen (Lond),2019,8(1):12-20.
[9] Mohamed A,Ang YS,Radzinsky E,et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration[J]. Cell,2018,173(1):104-116.
[10] Mahmoud AI,Kocabas F,Muralidhar SA,et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest[J]. Nature,2016,497(7448):249-253.
[11] Xiang FL,Guo M,Yutzey KE. Overexpression of Tbx20 in Adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction[J]. Circulation,2016,133(11):1081-1173.
[12] Chen Y,Li X,Li B,et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling[J]. Mol Ther,2019,27(1):29-45.
[13] 白雪枫,马宏. MicroRNAs在急性心肌梗死中的应用研究进展[J]. 心血管病学进展,2018,39(1):103-106.
[14] Castellan RFP,Meloni M. Mechanisms and therapeutic targets of cardiac regeneration:closing the age gap[J]. Front Cardiovasc Med,2018,5(1):31-38.
[15] Huang W,Feng Y,Liang J,et al. Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration[J]. Nat Commun,2018,9(1):70-80.
[16] Gao F,Kataoka M,Liu N,et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction[J]. Nat Commun,2019,10(1):180-192.
[17] Borden A,Borden A,Kurian J,et al. Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury[J]. Circ Res,2019,125(1):14-25.
[18] Ponnusamy M,Liu F,Zhang Y,et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair[J]. Circulation,2019,139(23):2668-2684.
[19] Zhang Q,Cheng Z,Yu Z,et al. Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes[J]. Mol Med Rep,2019,19(6):4927-4934.
[20] Li M,Ding W,Sun T,et al. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology[J]. FEBS J,2018,285(2):220-232.
[21] Huang S,Li X,Zheng H,et al. Loss of super-enhancer-regulated circRNA nfix induces cardiac regeneration after myocardial infarction in adult mice[J]. Circulation,2019,139(25):2857-2876.
[22] Wang YY,Yu W,Zhou B. Hippo signaling pathway in cardiovascular development and diseases[J]. Yi Chuan,2017,39(7):576-587.
[23] Liu S,Martin JF.The regulation and function of the Hippo pathway in heart regeneration[J]. Wiley Interdiscip Rev Dev Biol,2019,8(1):335-351.
[24] Miyawaki A,Obana M,Mitsuhara Y,et al. Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis[J]. Sci Rep,2017,7(1):140-157.
[25] Rischpler C. Acute myocardial infarction[J]. Q J Nucl Med Mol Imaging,2016,60(3):236-287.
[26] Han C,Nie Y,Lian H,et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart[J]. Cell Res,2015,25(10):137-188.
[27] Hara H,Takeda N,Komuro I. Pathophysiology and therapeutic potential of cardiac fibrosis[J]. Inflamm Regen,2017,37(3):113-127.
[28] Nakada Y,Thet S,Abdisalaam S,et al. Hypoxia induces heart regeneration in adult mice[J]. Nature,2017,541(7636):222-227.
[29] Schreiber T,Salhofer L,Quinting T,et al. Things get broken:the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease[J]. Basic Res Cardiol,2019,114(3):16-33.
[30] Wang S,Ye L,Li M,et al. GSK-3beta inhibitor CHIR-99021 Promotes proliferation through upregulating beta-catenin in neonatal atrial human cardiomyocytes[J]. J Cardiovasc Pharmacol,2016,68(6):425-432.
[31] Samse K,Hariharan N,Sussman MA.Personalizing cardiac regenerative therapy:at the heart of Pim1 kinase[J].Pharmacol Res,2016,103(3):13-16.
[32] Polizzotti D,Ganapathy B,Walsh S,et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window[J]. Sci Transl Med,2015,7(281):281-326.
[33] Natarajan N,Abbas Y,Sharpe M,et al. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration[J]. Circulation,2018,137(20):2152-2165.
[34] Hirose K,Cutie S,Hoang A,et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition[J]. Science,2019,364(6436):184-188.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(4):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]黄淮滨 刘甲兴.肥厚型心肌病治疗新靶点——钙脱敏治疗[J].心血管病学进展,2019,(7):1047.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.021]
 HUANG HuaibinLIU Jiaxing.A Novel Target for Therapy in Hypertrophic Cardiomyopathy: Ca2+ desensitizer[J].Advances in Cardiovascular Diseases,2019,(4):1047.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.021]
[3]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(4):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[4]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(4):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[5]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(4):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[6]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(4):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[7]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(4):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(4):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[9]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(4):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[10]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(4):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[11]魏士雄 孙赫.过氧化物酶体增殖物激活受体激动剂在心肌梗死中的作用机制研究进展[J].心血管病学进展,2021,(12):1110.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.013]
 WEI Shixiong,SUN He.Action Mechanism of Peroxisome Proliferator-activated Receptor Agonist in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2021,(4):1110.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.013]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金面上项目(81770361)
通讯作者:王连生, E-mail: drlswang@njmu.edu.cn 
更新日期/Last Update: 2020-07-28