[1]黄淮滨 刘甲兴.肥厚型心肌病治疗新靶点——钙脱敏治疗[J].心血管病学进展,2019,(7):1047-1051.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.021]
 HUANG HuaibinLIU Jiaxing.A Novel Target for Therapy in Hypertrophic Cardiomyopathy: Ca2+ desensitizer[J].Advances in Cardiovascular Diseases,2019,(7):1047-1051.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.021]
点击复制

肥厚型心肌病治疗新靶点——钙脱敏治疗()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年7期
页码:
1047-1051
栏目:
综述
出版日期:
2019-10-25

文章信息/Info

Title:
A Novel Target for Therapy in Hypertrophic Cardiomyopathy: Ca2+ desensitizer
作者:
黄淮滨 刘甲兴
( 中国人民解放军联勤保障部队第910医院,福建 泉州 362000)
Author(s):
HUANG HuaibinLIU Jiaxing
关键词:
肥厚型心肌病心肌细胞钙离子敏剂药物治疗
Keywords:
Hypertrophic cardiomyopathyCardiomyocyteCa2+ desensitizerPharmacologic treatment
DOI:
10.16806/j.cnki.issn.1004-3934.2019.07.021
摘要:
肥厚型心肌病(HCM)是最常见的遗传性心脏疾病之一,是青年人猝死的最常见原因。目前,在HCM的临床治疗上,指南推荐的药物治疗主要为β肾上腺素能受体拮抗剂和钙离子通道阻滞剂,这些药物的作用以缓解症状为主,通过降低细胞内钙离子的获取从而降低心肌收缩力,预防心律失常和改善能量缺陷。然而,这些药物的应用,特别是长期使用,并没有得到充足的临床数据支持,并不能改善HCM渐进性病理性改变的自然发展。近年来多项研究表明,钙离子敏感性增加可能是HCM心室肥厚和其他表型表达的主要刺激因素,因此,就心肌钙离子敏感性增强在HCM发病过程中发挥的作用,以及心肌钙脱敏治疗在HCM中的研究进展一综述。
Abstract:
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic heart disorders and leads to increased risk for sudden cardiac deaths. At present, β-adrenergic receptor antagonists and Ca2+ channel blockers are recommended for the treatment of HCM. These drugs, which inhibit contraction by decreasing Ca2+ availability, preventing arrhythmias and improving energy de?cit, are recommended for symptom relief. However, their use, especially long-term use, is not overwhelmingly well supported by clinical data. Moreover, none of these drugs alters the natural history of the progressive pathologic remodeling in HCM. The aim of this narrative review is to provide readers with an overview of the genetic and molecular mutations that occur in HCM and to describe their contributions to changing myo?lament Ca2+ sensitivity, as revealed by basic research techniques. Recent discoveries and breakthroughs that support the premise that increased Ca2+ sensitivity is the primary stimulus for hypertrophy and other phenotypic expressions in HCM are discussed.

参考文献/References:

[1] Semsarian C, Ingles J, Maron MS, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy[J]. J Am Coll Cardiol,2015,65(12): 1249-1254.
[2] Maron BJ, Maron MS. Hypertrophic cardiomyopathy[J]. Lancet,2013,381(9862):242-255.
[3] McNally EM, Barefield DY, Puckelwartz MJ. The genetic landscape of cardiomyopathy and its role in heart failure[J]. Cell Metab,2015,21(2): 174-182.
[4] Ormerod JO, Frenneaux MP, Sherrid MV. Myocardial energy depletion and dynamic systolic dysfunction in hypertrophic cardiomyopathy[J]. Nat Rev Cardiol,2016,13(11):677-687.
[5] Spudich JA. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy[J]. Biochem Soc Trans,2015,43(1):64-72.
[6] Brenner B, Seebohm B, Tripathi S, et al. Familial hypertrophic cardiomyopathy: functional variance among individual cardiomyocytes as a trigger of FHC-phenotype development[J]. Front Physiol,2014,5(10):392.
[7] Schober T, Huke S, Venkataraman R, et al. Myofilament Ca sensitization increases cytosolic Ca binding affinity, alters intracellular Ca homeostasis, and causes pause-dependent Ca-triggered arrhythmia[J]. Circ Res,2012,111(2): 170-179.
[8] Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis[J]. Nat Med,2007,13(8):952-961.
[9] Spoladore R, Maron MS, D’Amato R, et al. Pharmacological treatment options for hypertrophic cardiomyopathy: high time for evidence[J]. Eur Heart J,2012,33(14): 1724-1733.
[10] Ren X, Hensley N, Brady MB, et al. The Genetic and Molecular Bases for Hypertrophic Cardiomyopathy: The Role for Calcium Sensitization[J]. J Cardiothorac Vasc Anesth,2018,32(1):478-487.
[11] Aksel T, Choe Yu E, Sutton S, et al. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector[J]. Cell Rep,2015,11(6):910-920.
[12] Spudich JA, Aksel T, Bartholomew SR, et al. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human beta-cardiac myosin[J]. J Exp Biol,2016,219(Pt 2):161-167.
[13] van Dijk SJ, Dooijes D, dos Remedios C, et al. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction[J]. Circulation,2009,119(11): 1473-1483.
[14] Mun JY, Kensler RW, Harris SP, et al. The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position[J]. J Mol Cell Cardiol,2016,91:141-147.
[15] Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament[J]. Circ Res,2011,108(6):751-764.
[16] Willott RH, Gomes AV, Chang AN, et al. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? [J]. J Mol Cell Cardiol,2010,48(5):882-892.
[17] Robinson P, Griffiths PJ, Watkins H, et al. Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments[J]. Circ Res,2007,101(12):1266-1273.
[18] Ertz-Berger BR, He H, Dowell C, et al. Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice[J]. Proc Natl Acad Sci U S A,2005,102(50):18219-18224.
[19] Heller MJ, Nili M, Homsher E, et al. Cardiomyopathic tropomyosin mutations that increase thin filament Ca2+ sensitivity and tropomyosin N-domain flexibility[J]. J Biol Chem,2003,278(43):41742-41748.
[20] Gupte TM, Haque F, Gangadharan B, et al. Mechanistic heterogeneity in contractile properties of alpha-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies[J]. J Biol Chem,2015,290(11):7003-7015.
[21] Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy[J]. Circ Res,2011,109(1):86-96.
[22] Hamada M, Ikeda S, Shigematsu Y. Advances in medical treatment of hypertrophic cardiomyopathy[J]. J Cardiol,2014,64(1):1-10.
[23] Tardiff JC, Carrier L, Bers DM, et al. Targets for therapy in sarcomeric cardiomyopathies[J]. Cardiovasc Res,2015,105(4):457-470.
[24] Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases[J]. Biophys J,2014,106(6):1236-1249.
[25] Davis J, Davis LC, Correll RN, et al. A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy[J]. Cell,2016,165(5):1147-1159.
[26] Green EM, Wakimoto H, Anderson RL, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice[J]. Science,2016,351(6273): 617-621.
[27] Link MS, Bockstall K, Weinstock J, et al. Ventricular Tachyarrhythmias in Patients With Hypertrophic Cardiomyopathy and Defibrillators: Triggers, Treatment, and Implications[J]. J Cardiovasc Electrophysiol,2017,28(5):531-537.
[28] Baudenbacher F, Schober T, Pinto JR, et al. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice[J]. J Clin Invest,2008,118(12):3893-3903.
[29] de Waard MC, van der Velden J, Bito V, et al. Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction[J]. Circ Res,2007,100(7):1079-1088.
[30] Boukhris M, Tomasello SD, Khanfir R, et al. Impacts of cardiac rehabilitation on ventricular repolarization indexes and ventricular arrhythmias in patients affected by coronary artery disease and type 2 diabetes[J]. Heart Lung,2015,44(3):199-204.
[31] Grieshaber P, Lipp S, Arnold A, et al. Impact of prophylactic administration of Levosimendan on short-term and long-term outcome in high-risk patients with severely reduced left-ventricular ejection fraction undergoing cardiac surgery - a retrospective analysis[J]. J Cardiothorac Surg,2016,11(1):162.
[32]吴刚, 石少波, 杨波. 肥厚型心肌病的基因研究进展[J]. 心血管病学进展,2018,39(01):45-48.
[33]黄恺悦, 许勇. 梗阻性肥厚型心肌病的治疗进展[J]. 心血管病学进展,2018,39(04):663-667.
[34] Woll KA, Weiser BP, Liang Q, et al. Role for the propofol hydroxyl in anesthetic protein target molecular recognition[J]. ACS Chem Neurosci,2015,6(6):927-935.
[35] Ren X, Schmidt W, Huang Y, et al. Fropofol decreases force development in cardiac muscle[J]. FASEB J,2018,32(8):4203-4213.
[36] Huang Y, Lu H, Ren X, et al. Fropofol Prevents Disease Progression in Mice with Hypertrophic Cardiomyopathy[J]. Cardiovasc Res,2019,cvz218. doi: 10.1093/cvr/cvz218. [Epub ahead of print]

相似文献/References:

[1]冯坤,刘春霞,熊峰,等.超声心动图在肥厚型心肌病诊治中的应用进展[J].心血管病学进展,2016,(4):409.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.021]
 FENG Kun,LIU Chunxia,XIONG Feng,et al.Progress in Application of Echocardiography in Diagnosis and Treatment of Hypertrophic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(7):409.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.021]
[2]杜冲 韦文 李亚飞 王连生.心肌梗死后心肌细胞内源再生的研究进展[J].心血管病学进展,2020,(4):395.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.017]
 DU Chong,WEI Tianwen,LI Yafei,et al.Endogenous Regeneration of Myocardial Cells after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(7):395.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.017]
[3]谭海鹏 高金峰 李琦玉 王樵梓 张宁 陈婧 黄浙勇.MicroRNA促进心肌细胞再生机制的研究进展[J].心血管病学进展,2020,(7):698.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.007]
 TAN Haipeng,GAO Jinfeng,LI Qiyu,et al.Mechanism of MicroRNA Promoting Cardiomyocyte Regeneration[J].Advances in Cardiovascular Diseases,2020,(7):698.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.007]
[4]张伟 权大君 向杰 黄从新.人源性诱导多潜能干细胞向心肌细胞分化的实验研究[J].心血管病学进展,2020,(7):753.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.020]
 ZHANG Wei,QUAN Dajun,XIANG Jie,et al.Experimental Research on Differentiation of Human Induced Pluripotent Stem Cells into Cardiomyocytes[J].Advances in Cardiovascular Diseases,2020,(7):753.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.020]
[5]马秀英 贾锋鹏.肥厚型心肌病并发心房颤动的危险因素研究进展[J].心血管病学进展,2020,(12):1243.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.005]
 MA XiuyingJIA Fengpeng.Update about the Risk Factors of Hypertrophic Cardiomyopathy Complicated with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(7):1243.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.005]
[6]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(7):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]邓清文,何森.肥厚型心肌病合并心房颤动的研究进展[J].心血管病学进展,2021,(4):27.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.010]
 DENG Qingwen,HE Sen.Hypertrophic Cardiomyopathy Complicated with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(7):27.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.010]
[8]尚依一 刘罗 庞明杰 张艳.基因检测在肥厚型心肌病中的应用进展[J].心血管病学进展,2021,(6):512.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.009]
 SHANG Yiyi,LIU Luo,PANG Mingjie,et al.Gene Detection for Hypertrophic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(7):512.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.009]
[9]王娟 杨艳敏.肥厚型心肌病发生缺血性卒中的危险因素和管理策略研究进展[J].心血管病学进展,2021,(7):582.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.002]
 WANG Juan,YANG Yanmin.Risk Factors and Management Strategies of Ischemic Stroke in Hypertrophic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(7):582.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.002]
[10]武志刚 孙佳莉 王巍.基于心脏磁共振成像的肥厚型心肌病患者早期峰值充盈率与舒张功能相关性的研究[J].心血管病学进展,2021,(7):658.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.020]
 WU Zhigang,SUN Jiali,WANG Wei.Correlation Between Early Peak Filling Rate and Diastolic Function in Patients with Hypertrophic Cardiomyopathy Based on Cardiac Magnetic Resonance Imaging[J].Advances in Cardiovascular Diseases,2021,(7):658.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.020]

备注/Memo

备注/Memo:
收稿日期:2019-07-23
更新日期/Last Update: 2019-12-17