参考文献/References:
[1] Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering [J]. Trends Biotechnol, 2013, 31(7): 397-405.
[2] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. [J]. Science, 2014, 346(6213): 1258096.
[3] Chadwick AC, Musunuru K. Genome editing for the study of cardiovascular diseases [J]. Curr Cardiol Rep, 2017, 19(3): 22.
[4] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering [J]. Science, 2018, 361(6405): 866-869.
[5] Ohiri JC, McNally EM. Gene editing and gene-based therapeutics for cardiomyopathies [J]. Heart Fail Clin, 2018, 14(2): 179-188.
[6] Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification [J]. Nat Biotechnol, 2014, 32(6): 577-582.
[7] Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity [J]. Science, 2016, 351(6268): 84-88.
[8] Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects [J]. Nature, 2016, 529(7587): 490-495.
[9] Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy [J]. Nature, 2017, 550(7676): 407-410.
[10] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533(7603): 420-424.
[11] Gaudelli NM, Komor AC, Rees HA, et al. Programmablebaseediting?of A?T to G?C in genomic DNA without DNA cleavage [J]. Nature. 2017, 551(7681):464-471.
[12] Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, et al. Genetics of hypertrophic cardiomyopathy: A review of current state [J]. Clin Genet, 2018, 93(1): 3-14.
[13] Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification [J]. Nat Rev Cardiol, 2018, 15(4): 241-252.
[14] Arbustini E, Favalli V, Narula N, et al. Left ventricular noncompaction: a distinct genetic cardiomyopathy? [J]. J Am Coll Cardiol, 2016, 68(9): 949-966.
[15] Haggerty CM, James CA, Calkins H, et al. Electronic health record phenotype in subjects with genetic variants associated with arrhythmogenic right ventricular cardiomyopathy: a study of 30,716 subjects with exome sequencing [J]. Genet Med , 2017, 19(11): 1245-1252.
[16] Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation [J]. Nature, 1998, 392(6673): 293-296.
[17] Arbelo E, Sarquella-Brugada G, Brugada J. Gene-specific therapy for congenital long QT syndrome:are we there yet? [J]. J Am Coll Cardiol, 2016, 67(9): 1059-1061.
[18] Baruteau AE, Kyndt F, Behr ER, et al. SCN5A mutations in 442 neonates and children: genotype-phenotype correlation and identification of higher-risk subgroups [J]. Eur Heart J , 2018, 39(31): 2879-2887.
[19] Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells [J]. Cell Stem Cell, 2013, 12(1): 101-113.
[20] Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy [J]. Nat Cell Biol, 2016, 18(10): 1031-1042.
[21] Liang P, Sallam K, Wu H, et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of brugada syndrome [J]. J Am Coll Cardiol, 2016, 68(19): 2086-2096.
[22] Limpitikul WB, Dick IE, Tester DJ, et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome [J]. Circ Res , 2017, 120(1): 39-48.
[23] Mosqueira D, Mannhardt I, Bhagwan JR, et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletio n as potential therapeutic targets for hypertrophic cardiomyopathy [J]. Eur Heart J , 2018, 39(43): 3879-3892.
[24] Chang CW, Chang CC, Hsia KC, et al. Generation of FHL2 homozygous knockout lines from human embryonic stem cells by CRISPR/Cas9-mediated ablation [J]. Stem Cell Res, 2018, 27: 21-24.
[25] Ceholski DK, Turnbull IC, Kong CW, et al. Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes [J]. J Mol Cell Cardiol, 2018, 119: 147-154.
[26] Ma N, Zhang JZ, Itzhaki I, et al. Determining the pathogenicity of a genomic variant of uncertain significance using CRISPR/Cas9 and human-induced pluripotent stem cells [J]. Circulation, 2018, 138(23): 2666-2681.
[27] Chavali NV, Kryshtal DO, Parikh SS, et al. The patient-independent human iPSC model: a new tool for rapid determination of genetic variant pathogenicity in long QT syndrome [J]. Heart Rhythm, 2019, pii: S1547-5271(19)30360-1.
[28] Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy [J]. Sci Transl Med, 2017, 9(418): pii: eaan8081.
[29] Carroll KJ, Makarewich CA, McAnally J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9 [J]. Proc Natl Acad Sci U S A, 2016, 113(2): 338-343.
[30] Johansen AK, Molenaar B, Versteeg D, et al. Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-Mediated delivery of short guide RNAs results in mosaic gene disruption [J]. Circ Res, 2017, 121(10): 1168-1181.
[31] Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes [J]. Protein Cell, 2015, 6(5): 363-372.
[32] Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos [J]. Nature, 2017, 548(7668): 413-419.