[1]许霏 王永明 沈雳.CRISPR/Cas9技术在遗传性心肌疾病研究中的进展[J].心血管病学进展,2019,(9):1229-1232.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.011]
 XU Fei,WANG Yongming,SHEN Li.CRISPR/Cas9 Technologies in Inherited Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(9):1229-1232.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.011]
点击复制

CRISPR/Cas9技术在遗传性心肌疾病研究中的进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年9期
页码:
1229-1232
栏目:
综述
出版日期:
2019-12-25

文章信息/Info

Title:
CRISPR/Cas9 Technologies in Inherited Cardiomyopathy
作者:
许霏1 王永明12 沈雳1
 (1. 复旦大学附属中山医院心内科 上海市心血管病研究所,上海 200032 ;2. 复旦大学生命科学学院,上海 200438 )
Author(s):
XU Fei1 WANG Yongming12 SHEN Li1
(1.Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; 2. School of Life Sciences , Fudan University, Shanghai 200438, China)
关键词:
基因编辑基因工程CRISPR/Cas9心血管病心肌疾病
Keywords:
Gene edit ing Genetic engineeringCRISPR/Cas9Cardiovascular diseasesCardiomyopathy
DOI:
10.16806/j.cnki.issn.1004-3934.2019.09.011
摘要:
基因编辑技术是一种能够在基因组水平进行DNA序列稳定、精确改造的技术,以CRISPR/Cas9技术应用最广泛。在遗传性心肌疾病研究中,CRISPR/Cas9技术能被用于构建家族性肥厚型心肌病、扩张型心肌病、左心室心肌致密化不全等多种疾病模型,探究致病基因在各疾病发生发展中的作用,为疾病诊治提供有力帮助。目前,通过将CRISPR/Cas9技术与多能干细胞等技术相结合,国内外研究者已在细胞和动物水平开展了多种基因相关心血管疾病的形态、功能等研究,极大推动了相关领域的发展。
Abstract:
Genome-editing is a kind of techniques which transforms DNA sequences stably and accurately at genomic level, and CRISPR/Cas9 is the most widely used genome-editing technique. CRISPR/Cas9 can be utilized to construct disease models in the research of inherited cardiomyopathy, such as familial hypertrophic cardiomyopathy, dilated cardiomyopathy, and left ventricular non-compaction cardiomyopathy, to investigate the role of defected genes in the occurrence and development of diseases, and provide effective help in the diagnosis or therapy of diseases. Currently, by combining the genome-editing techniques with other techniques such as pluripotent stem cells, scientists have performed researches of multiple cardiovascular diseases both in vitro and in vivo , which greatly promoted the development of cardiovascular disease research

参考文献/References:

[1] Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering [J]. Trends Biotechnol, 2013, 31(7): 397-405.

[2] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. [J]. Science, 2014, 346(6213): 1258096.

[3] Chadwick AC, Musunuru K. Genome editing for the study of cardiovascular diseases [J]. Curr Cardiol Rep, 2017, 19(3): 22.

[4] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering [J]. Science, 2018, 361(6405): 866-869.

[5] Ohiri JC, McNally EM. Gene editing and gene-based therapeutics for cardiomyopathies [J]. Heart Fail Clin, 2018, 14(2): 179-188.

[6] Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification [J]. Nat Biotechnol, 2014, 32(6): 577-582.

[7] Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity [J]. Science, 2016, 351(6268): 84-88.

[8] Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects [J]. Nature, 2016, 529(7587): 490-495.

[9] Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy [J]. Nature, 2017, 550(7676): 407-410.

[10] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533(7603): 420-424.

[11] Gaudelli NM, Komor AC, Rees HA, et al. Programmablebaseediting?of A?T to G?C in genomic DNA without DNA cleavage [J]. Nature. 2017, 551(7681):464-471.

[12] Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, et al. Genetics of hypertrophic cardiomyopathy: A review of current state [J]. Clin Genet, 2018, 93(1): 3-14.

[13] Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification [J]. Nat Rev Cardiol, 2018, 15(4): 241-252.

[14] Arbustini E, Favalli V, Narula N, et al. Left ventricular noncompaction: a distinct genetic cardiomyopathy? [J]. J Am Coll Cardiol, 2016, 68(9): 949-966.

[15] Haggerty CM, James CA, Calkins H, et al. Electronic health record phenotype in subjects with genetic variants associated with arrhythmogenic right ventricular cardiomyopathy: a study of 30,716 subjects with exome sequencing [J]. Genet Med , 2017, 19(11): 1245-1252.

[16] Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation [J]. Nature, 1998, 392(6673): 293-296.

[17] Arbelo E, Sarquella-Brugada G, Brugada J. Gene-specific therapy for congenital long QT syndrome:are we there yet? [J]. J Am Coll Cardiol, 2016, 67(9): 1059-1061.

[18] Baruteau AE, Kyndt F, Behr ER, et al. SCN5A mutations in 442 neonates and children: genotype-phenotype correlation and identification of higher-risk subgroups [J]. Eur Heart J , 2018, 39(31): 2879-2887.

[19] Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells [J]. Cell Stem Cell, 2013, 12(1): 101-113.

[20] Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy [J]. Nat Cell Biol, 2016, 18(10): 1031-1042.

[21] Liang P, Sallam K, Wu H, et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of brugada syndrome [J]. J Am Coll Cardiol, 2016, 68(19): 2086-2096.

[22] Limpitikul WB, Dick IE, Tester DJ, et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome [J]. Circ Res , 2017, 120(1): 39-48.

[23] Mosqueira D, Mannhardt I, Bhagwan JR, et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletio n as potential therapeutic targets for hypertrophic cardiomyopathy [J]. Eur Heart J , 2018, 39(43): 3879-3892.

[24] Chang CW, Chang CC, Hsia KC, et al. Generation of FHL2 homozygous knockout lines from human embryonic stem cells by CRISPR/Cas9-mediated ablation [J]. Stem Cell Res, 2018, 27: 21-24.

[25] Ceholski DK, Turnbull IC, Kong CW, et al. Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes [J]. J Mol Cell Cardiol, 2018, 119: 147-154.

[26] Ma N, Zhang JZ, Itzhaki I, et al. Determining the pathogenicity of a genomic variant of uncertain significance using CRISPR/Cas9 and human-induced pluripotent stem cells [J]. Circulation, 2018, 138(23): 2666-2681.

[27] Chavali NV, Kryshtal DO, Parikh SS, et al. The patient-independent human iPSC model: a new tool for rapid determination of genetic variant pathogenicity in long QT syndrome [J]. Heart Rhythm, 2019, pii: S1547-5271(19)30360-1.

[28] Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy [J]. Sci Transl Med, 2017, 9(418): pii: eaan8081.

[29] Carroll KJ, Makarewich CA, McAnally J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9 [J]. Proc Natl Acad Sci U S A, 2016, 113(2): 338-343.

[30] Johansen AK, Molenaar B, Versteeg D, et al. Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-Mediated delivery of short guide RNAs results in mosaic gene disruption [J]. Circ Res, 2017, 121(10): 1168-1181.

[31] Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes [J]. Protein Cell, 2015, 6(5): 363-372.

[32] Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos [J]. Nature, 2017, 548(7668): 413-419.

相似文献/References:

[1]刘洪娟 徐亚伟.CRISPR/Cas9基因编辑在心血管领域的应用进展[J].心血管病学进展,2021,(12):1117.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.015]
 LIU Honghuan,XU Yawei.Application Progress of CRISPR/Cas9 Gene Editing in Cardiovascular[J].Advances in Cardiovascular Diseases,2021,(9):1117.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.015]

更新日期/Last Update: 2020-02-06