参考文献/References:
[1] Brunet A, Berger SL. Epigenetics of aging and aging-related disease[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(Suppl 1): S17-20.
[2] Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease[J]. Circulation, 2011, 123(19): 2145-2156.
[3] Tan Q, Christiansen L, Thomassen M, et al. Twins for epigenetic studies of human aging and development[J]. Ageing Res Rev, 2013, 12(1): 182-187.
[4] Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins[J]. Proc Natl Acad Sci U S A, 2005, 102(30): 10604-10609.
[5] Maegawa S, Lu Y, Tahara T, et al. Caloric restriction delays age-related methylation drift[J]. Nat Commun, 2017, 8(1): 539.
[6] Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation[J]. Nature, 2013, 502(7472): 472-479.
[7] Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression[J]. J Cell Physiol, 2007, 213(2): 384-390.
[8] Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation[J]. Annu Rev Biochem, 2007, 76: 75-100.
[9] Paneni F, Costantino S, Cosentino F. Molecular pathways of arterial aging[J]. Clin Sci (Lond), 2015, 128(2): 69-79.
[10] Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications[J]. Circ Res, 2010, 107(12): 1403-1413.
[11] Gurha P, Marian AJ. Noncoding RNAs in cardiovascular biology and disease[J]. Circ Res, 2013, 113(12): e115-120.
[12] Mathiyalagan P, Keating ST, Du XJ, et al. Interplay of chromatin modifications and non-coding RNAs in the heart[J]. Epigenetics, 2014, 9(1): 101-112.
[13] Magistri M, Faghihi MA, St Laurent G, 3rd, et al. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts[J]. Trends Genet, 2012, 28(8): 389-396.
[14] Baccarelli A, Ghosh S. Environmental exposures, epigenetics and cardiovascular disease[J]. Curr Opin Clin Nutr Metab Care, 2012, 15(4): 323-329.
[15] Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism[J]. Nature, 2013, 502(7472): 489-498.
[16] Tabak AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development[J]. Lancet, 2012, 379(9833): 2279-2290.
[17] Crujeiras AB, Diaz-Lagares A, Moreno-Navarrete JM, et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects[J]. Transl Res, 2016, 178: 13-24.e15.
[18] Muniandy M, Heinonen S, Yki-Jarvinen H, et al. Gene expression profile of subcutaneous adipose tissue in BMI-discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub-types of obesity[J]. Int J Obes (Lond), 2017, 41(8): 1176-1184.
[19] Zhao J, Goldberg J, Bremner JD, et al. Global DNA methylation is associated with insulin resistance: a monozygotic twin study[J]. Diabetes, 2012, 61(2): 542-546.
[20] Simar D, Versteyhe S, Donkin I, et al. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human[J]. Metabolism, 2014, 63(9): 1188-1197.
[21] Pietilainen KH, Ismail K, Jarvinen E, et al. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs[J]. Int J Obes (Lond), 2016, 40(4): 654-661.
[22] Paneni F, Costantino S, Cosentino F. Role of oxidative stress in endothelial insulin resistance[J]. World J Diabetes, 2015, 6(2): 326-332.
[23] Gage MC, Yuldasheva NY, Viswambharan H, et al. Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: a role for reactive oxygen species[J]. Atherosclerosis, 2013, 230(1): 131-139.
[24] Hasegawa Y, Saito T, Ogihara T, et al. Blockade of the nuclear factor-kappaB pathway in the endothelium prevents insulin resistance and prolongs life spans[J]. Circulation, 2012, 125(9): 1122-1133.
[25] Tabit CE, Shenouda SM, Holbrook M, et al. Protein kinase C-beta contributes to impaired endothelial insulin signaling in humans with diabetes mellitus[J]. Circulation, 2013, 127(1): 86-95.
[26] Costantino S, Paneni F, Virdis A, et al. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity[J]. Euro Heart J, 2019, 40(4): 383-391.
相似文献/References:
[1]张文珺 牛小伟 刘永铭.m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展[J].心血管病学进展,2022,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
ZHANG Wenjun,NIU Xiaowei,LIU Yongming.m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(6):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
[2]傅义程 张福春 刘慧琳.表观遗传年龄与衰老和心血管疾病的研究进展[J].心血管病学进展,2022,(7):590.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
FU Yicheng,ZHANG Fuchun,LIU Huilin.Epigenetic Age with Senescence and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(6):590.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[3]林力 陈敏 梁明露 宁璐璐 王紫 黄恺.非编码RNA在代谢性心血管疾病中的研究及治疗现状[J].心血管病学进展,2022,(10):915.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.012]
LIN Li,CHEN Min,LIANG Minglu,et al.Research and Treatment Status of Non-coding RNA in Metabolic Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(6):915.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.012]
[4]郭梦阳 王守富 邢冬梅.DNA甲基化与原发性高血压关系研究进展[J].心血管病学进展,2023,(7):631.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.013]
GUO Mengyang,WANG Shoufu,XING Dongmei.Relationship Between DNA Methylation and Essential Hypertension[J].Advances in Cardiovascular Diseases,2023,(6):631.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.013]
[5]刘娟婧,杨志明.白脂素对代谢性心血管疾病潜在作用的研究进展[J].心血管病学进展,2023,(8):728.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.013]
LIU Juanjing,YANG Zhiming.Effect of Asprosin on Metabolic Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(6):728.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.013]