[1]吉家钗 陈娟 符策岗.利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚[J].心血管病学进展,2019,(7):1067-1072.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
 JI jiachai,CHEN juan,FU cegang.Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux[J].Advances in Cardiovascular Diseases,2019,(7):1067-1072.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
点击复制

利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年7期
页码:
1067-1072
栏目:
论著
出版日期:
2019-10-25

文章信息/Info

Title:
Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux
作者:
吉家钗1 陈娟1 符策岗2
(1. 中南大学湘雅医学院附属海口市人民医院全科医学科,海南 海口 570208 ;2.上海市第六人民医院-海口市骨科与糖尿病医院骨科,海南 海口 570000 )
Author(s):
JI jiachai1 CHEN juan1 FU cegang2
(1.General Medicine department of Haikou People ’s HospitalXiangya Medical CollegeCentral South UniversityHaikou 570208HainanChina2.Department of orthopedics, Orthopedics and Diabetes Hospital in Haikou, Shanghai sixth People’s Hospital, Haikou 570000Hainan, China)
关键词:
利拉鲁肽心肌肥厚自噬
Keywords:
Liraglutide Hypertrophy Autophagy
DOI:
10.16806/j.cnki.issn.1004-3934.2019.07.025
摘要:
目的 探究利拉鲁肽(Liraglutide)对去氧肾上腺素(phenylephrine,PE)诱导的原代大鼠心肌肥厚的影响。方法 原代大鼠心肌随机分成4组:对照组、利拉鲁肽组、PE组、PE+利拉鲁肽组。对照组原代大鼠心肌细胞接受2 μL二甲基亚砜刺激48 h;利拉鲁肽组接受1 μM利拉鲁肽刺激48 h;PE组接受50 μM PE 刺激48 h;PE+利拉鲁肽组接受1 μM利拉鲁肽联合50 μM PE刺激48 h。通过Western Blot检测有关信号通路变化;qPCR检测心房钠尿肽(atrial natriuretic peptide,ANP)、脑钠肽(brain natriuretic peptide,BNP)、α-肌球蛋白重链(α-MHC)和β-肌球蛋白重链(β-MHC)的变化;通过免疫荧光染色检测原代大鼠心肌细胞表面积变化。结果 接受不同刺激48 h后,PE组相对于对照组ANP、BNP和β-MHC的mRNA水平明显升高(P值均<0.001),α-MHC的mRNA水平显著降低(P<0.001),自噬明显增强(P<0.01),原代大鼠心肌细胞表面积显著增加(P<0.05);PE+利拉鲁肽组ANP、BNP和β-MHC的mRNA水平明显低于PE组(P<0.001、P<0.01、P<0.05),α-MHC的mRNA水平显著高于PE组(P<0.05),自噬水平显著高于PE组(P<0.001),原代大鼠心肌细胞表面积明显小于PE组(P<0.05)。结论 利拉鲁肽能明显减轻PE诱导的原代大鼠心肌细胞肥厚,可能成为治疗病理性心肌肥厚的新药物。
Abstract:
Objects To study the effects of liraglutide on hypertrophy induced by phenylephrine(PE) in Neonatal Rat Cardiac Myocytes (NRCMs). Metheds The NRCMs were divided into 4 groups: sham group (2μL DMSO for 48h), liraglutide group ( 1μM liraglutide for 48h), PE group (50μM PE for 48h), and PE+liraglutide group (50μM PE combined with 1μM liraglutide for 48h). The Western Blot was performed to detect the changes of signaling. The qPCR was used to assess the mRNA levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), α-MHC and β-MHC. The area of the NRCMs was measured by immunofluorescence in 4 groups after different treatments for 48h. Results Following the different stimulations, the mRNA levels of ANP, BNP and β-MHC significantly increased in PE group compared with sham group, accompanied by an apparently lower α-MHC while the autophagy levels and the areas of NRCMs were obviously increased. Comparing with PE group, the mRNA levels ofANP, BNP and β-MHC were distinctly decreased in PE+liraglutide group with a much higher mRNA level of α-MHC. The autophagy levels were notably augmented in PE+liraglutide group compared with PE group, but the areas of NRCMs were reduced. Conclusions The liraglutide can mitigate the hypertrophy induced by PE in NRCMs and become a potential new drug for treating the pathological hypertrophy

参考文献/References:


[1] Mayhew AJ, de Souza RJ, Meyre D, et al. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality[J]. Br J Nutr, 2016,115(2):212-225.

[2] Lieu M, Koch WJ. GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy[J]. Expert Opin Ther Targets, 2019,23(3):201-214.

[3] Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J]. Arch Toxicol, 2015,89(9):1401-1438.

[4] 郭锦涛,孟庆姝. 肠道菌群失调在心力衰竭中的作用研究进展[J]. 心血管病学进展, 2018,39(4):619-622.

[5] 郭美姿. MicroRNAs介导的代谢调节与心力衰竭相关的研究进展[J]. 心血管病学进展, 2018,39(6):966-969.

[6] Greig SL, Scott LJ. Insulin Degludec/Liraglutide: A Review in Type 2 Diabetes[J]. Drugs, 2015,75(13):1523-1534.

[7] Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors[J]. Diabetes Obes Metab, 2016,18(3): 203-216.

[8] Hwang JI, Yun S, Moon MJ, et al. Molecular evolution of GPCRs: GLP1/GLP1 receptors[J]. J Mol Endocrinol, 2014,52(3):T15-T27.

[9] Lamos EM, Malek R, Davis SN. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome[J]. Expert Rev Clin Pharmacol, 2017,10(4): 401-408.

[10] Mcguire DK, Marx N, Johansen OE, et al. FDA Guidance on Antihyperglycemic Therapies for Type 2 Diabetes: One Decade Later[J]. Diabetes Obes Metab, 2019,21(5) :1073-1078.

[11] Petit JM, Verges B. GLP-1 receptor agonists in NAFLD[J]. Diabetes Metab, 2017,43(Suppl 1):2S-28S.

[12] Buse JB. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes[J]. N Engl J Med, 2016,375(18):1798-1799.

[13] Arturi F, Succurro E, Miceli S, et al. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure[J]. Endocrine, 2017,57(3):464-473.

[14] Kumarathurai P, Anholm C, Nielsen OW, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study[J]. Cardiovasc Diabetol, 2016,15(1):105.

[15] 赵勇, 刘晓伟, 林治宇, 等. 新生SD大鼠心肌细胞的原代培养[J]. 黑龙江医药科学, 2017,40(6):1-2.

[16] Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks[J]. Mol Cell Biol, 2012,32(1):2-11.

[17] Laker RC, Drake JC, Wilson RJ, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy[J]. Nat Commun, 2017,8(1):548.

[18] Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes[J]. N Engl J Med, 2016,375(4):311-322.

[19] Margulies KB, Hernandez AF, Redfield MM, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial[J]. JAMA, 2016,316(5):500-508.

相似文献/References:

[1]冯炜琦 陈颖慧 丁晓维 赵鹏军 于昱.多巴胺受体在心血管疾病中的作用及其分子机制研究进展[J].心血管病学进展,2022,(8):726.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.015]
 FENG Weiqi,CHEN Yinghui,DING Xiaowei,et al.Function of Dopamine Receptors in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2022,(7):726.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.015]
[2]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
 YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(7):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
[3]陈梦雅 谢赛阳 邓伟.抑制泛素特异性蛋白酶7改善血管紧张素Ⅱ诱导的心肌细胞肥大[J].心血管病学进展,2024,(2):174.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.016]
 CHEN Mengya,XIE Saiyang,DENG Wei.Inhibition of Ubiquitin-Specific Protease 7 Improves Angiotensin-Induced Cardiomyocyte Hypertrophy[J].Advances in Cardiovascular Diseases,2024,(7):174.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.016]

更新日期/Last Update: 2019-12-17