[1]张楠 王萍.松弛素对冠状动脉微循环的影响[J].心血管病学进展,2019,(5):704-708.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.011]
 ZHANG Nan,WANG Ping.Effects of elaxin on Coronary Microcirculation[J].Advances in Cardiovascular Diseases,2019,(5):704-708.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.011]
点击复制

松弛素对冠状动脉微循环的影响()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年5期
页码:
704-708
栏目:
综述
出版日期:
2019-08-25

文章信息/Info

Title:
Effects of elaxin on Coronary Microcirculation
作者:
张楠 王萍
(首都医科大学附属北京友谊医院心血管中心,北京 100050)
Author(s):
ZHANG NanWANG Ping
(Heart Center,Beijing Friendship Hospital,Capital Medical University,Beijing 100050,China)
关键词:
松弛素微血管冠状动脉微循环
Keywords:
elaxin Microvascular Coronary microcirculation
DOI:
10.16806/j.cnki.issn.1004-3934.2019.05.011
摘要:
近年来发现松弛素不仅可治疗心力衰竭、心肌纤维化、扩张大动脉血管,而且可扩张微血管,增加微循环血流灌注,抑制炎症活化,保护血管内皮,抑制内皮-间质转化,减轻缺血再灌注损伤,松弛素可以从多方面改善微循环障碍。现就近年来松弛素在血管、微血管领域的研究进展进行概述,以期为临床治疗冠状动脉微血管疾病提供新的治疗思路,改善冠状动脉微循环障碍患者的生活质量和减少因心绞痛反复就医带来的巨大医疗消费。
Abstract:
In recent years, relaxin can not only treat heart failure, cardic fibrosis and dilate large arteries, but also dilate microvessels, increase the microvascular perfusion, inhibit inflammatory activation, protect vascular endothelium, inhibit endothelial-mesenchymal transition, and reduce ischemia-reperfusion injury. In a word, relaxin can improve microvascular dysfunction in several ways. This review summarizes the recent advances of relaxin in the field of vascular and microvascular area, aiming to provide novel therapeutic ideas for coronary microvascular diseases, improve the quality of life of patients with coronary microvascular dysfunction, and reduce the huge medical cost caused by repeated treatment for angina pectoris

参考文献/References:

[1] Jelinic M,Leo CH,Post UE,et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment[J]. FASEB J,2014,28(1):275-287.
[2] Ferreira VM,Gomes TS,Reis LA,et al. Receptor-induced dilatation in the systemic and intrarenal adaptation to pregnancy in rats[J]. PLoS One,2009,4(3):e4845.
[3] Valkovic AL, Leckey MB, Whitehead AR, et al. Real-time examination of cAMP activity at relaxin family peptide receptors using a BRET-based biosensor[J]. Pharmacol Res Perspect,2018,6(5):e432.
[4] Leo CH, Jelinic M, Ng HH, et al. Serelaxin: a novel therapeutic for vascular diseases[J]. Trends Pharmacol Sci,2016,37(6):498-507.
[5] Mcguane JT, Debrah JE, Sautina L, et al. Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide[J]. Endocrinology,2011,152(7):2786-2796.
[6] Fernandez-Patron C,Radomski MW,Davidge ST. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor[J]. Circ Res,1999,85(10):906-911.
[7] Wang D, Luo Y, Myakala K, et al. Serelaxin improves cardiac and renal function in DOCA-salt hypertensive rats[J]. Sci Rep,2017,7(1):9793.
[8] Ponikowski P,Mitrovic V,Ruda M,et al. A randomized, double-blind, placebo-controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure[J]. Eur Heart J,2014,35(7):431-441.
[9] Schiffner R,Nistor M,Bischoff SJ,et al. Effects of human relaxin-2(serelaxin) on hypoxic pulmonary vasoconstriction during acute hypoxia in a sheep model[J]. Hypoxia (Auckl),2018,6:11-22.
[10] Dschietzig T,Bartsch C,Richter C,et al. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist:attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB[J]. Circ Res,2003,92(1):32-40.
[11] Bitto A, Irrera N, Minutoli L, et al. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice[J]. Clin Sci (Lond),2013,125(12):575-585.
[12] Debrah DO,Debrah JE,Haney JL,et al. Relaxin regulates vascular wall remodeling and passive mechanical properties in mice[J]. J Appl Physiol (1985),2011,111(1):260-271.
[13] Xu Q,Chakravorty A,Bathgate RA,et al. Relaxin therapy reverses large artery remodeling and improves arterial compliance in senescent spontaneously hypertensive rats[J]. Hypertension,2010,55(5):1260-1266.
[14] Chan SL,Sweet JG,Cipolla MJ. Treatment for cerebral small vessel disease:effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension[J]. FASEB J,2013,27(10):3917-3927.
[15] Mccarthy JC,Aronovitz M,Dupont JJ,et al. Short-term administration of serelaxin produces predominantly vascular benefits in the angiotensin Ⅱ/L-NAME chronic heart failure model[J]. JACC Basic Transl Sci,2017,2(3):285-296.
[16] Bani-Sacchi T,Bigazzi M,Bani D,et al. Relaxin-induced increased coronary flow through stimulation of nitric oxide production[J]. Br J Pharmacol,1995,116(1):1589-1594.
[17] Baccari MC,Bani D. Relaxin and nitric oxide signalling[J]. Curr Protein Pept Sci,2008,9(6):638-645.
[18] Bani D,Masini E,Bello MG,et al. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart[J]. Am J Pathol,1998,152(5):1367-1376.
[19] Valle RJ,Mauro AG,Devarakonda T,et al. Reperfusion therapy with recombinant human relaxin-2(serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism[J]. Cardiovasc Res,2017,113(6):609-619.
[20] Leo CH,Jelinic M,Gooi JH,et al. A vasoactive role for endogenous relaxin in mesenteric arteries of male mice[J]. PLoS One,2014,9(9):e107382.
[21] Stankevicius E,Dalsgaard T,Kroigaard C,et al. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat[J]. J Pharmacol Exp Ther,2011,339(3):842-850.
[22] Lian X,Beer-Hammer S,Konig GM,et al. RXFP1 receptor activation by relaxin-2 induces vascular relaxation in mice via a Gαi2-protein/PI3K?/γ/nitric oxide-coupled pathway[J]. Front Physiol,2018,9:1234.
[23] Pini A,Boccalini G,Baccari MC,et al. Protection from cigarette smoke-induced vascular injury by recombinant human relaxin-2(serelaxin)[J]. J Cell Mol Med,2016,20(5):891-902.
[24] Ng HH,Leo CH,Parry LJ. Serelaxin(recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by ameliorating prostacyclin production in the mouse aorta[J]. Pharmacol Res,2016,107:220-228.
[25] Leo CH,Jelinic M,Ng HH,et al. Time-dependent activation of prostacyclin and nitric oxide pathways during continuous i.v. infusion of serelaxin(recombinant human H2 relaxin)[J]. Br J Pharmacol,2016,173(6):1005-1017.
[26] Bischoff SJ,Schmidt M,Lehmann T,et al. Increase of cortical cerebral blood flow and further cerebral microcirculatory effects of serelaxin in a sheep model[J]. Am J Physiol Heart Circ Physiol,2016,311(3):H613-H620.
[27] Zheng G,Cai J,Chen X,et al. Relaxin ameliorates renal fibrosis and expression of endothelial cell transition markers in rats of isoproterenol-induced heart failure[J]. Biol Pharm Bull,2017,40(7):960-966.
[28] Cai J, Chen X, Chen X, et al. Anti-fibrosis effect of relaxin and spironolactone combined on isoprenaline-induced myocardial fibrosis in rats via inhibition of endothelial-mesenchymal transition[J]. Cell Physiol Biochem,2017,41(3):1167-1178.
[29] Zhou X,Chen X,Cai JJ,et al. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway[J]. Drug Des Devel Ther,2015,9:4599-4611.
[30] Ahmad N,Wang W,Nair R,et al. Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1:induction of MMP-9 involves the PI3K, ERK, Akt and PKC-zeta pathways[J]. Mol Cell Endocrinol,2012,363(1-2):46-61.
[31]Chow BS,Chew EG,Zhao C,et al. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases:the additional involvement of iNOS[J]. PLoS One,2012,7(8):e42714.
[32] Collino M,Rogazzo M,Pini A,et al. Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury[J]. J Cell Mol Med,2013,17(11):1494-1505.

相似文献/References:

[1]石玉姣 熊双 刘春秋 杨晨光 董国菊 刘剑刚.射血分数保留性心力衰竭潜在的分子机制及治疗靶点[J].心血管病学进展,2022,(5):423.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.010]
 SHI Yujiao,XIONG Shuang,LIU Chunqiu,et al.Potential Molecular Mechanisms and Therapeutic Target in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(5):423.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.010]

备注/Memo

备注/Memo:
基金项目:首都医科大学基础-临床科研合作课题( 17JL39);首都医科大学附属北京友谊医院2018院启动基金() 收稿日期:2018-12-17
更新日期/Last Update: 2019-12-23