[1]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659-662.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
点击复制

人工智能在心脏磁共振成像中的应用进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年5期
页码:
659-662
栏目:
主题综述
出版日期:
2019-08-25

文章信息/Info

Title:
Application of Artificial Intelligence in Cardiovascular Magnetic Resonance Imaging
作者:
渠海贤1 李涛 2 程流泉2
(1.解放军总医院海南医院放射诊断科,海南 三亚 572000;2.解放军总医院第一医学中心放射诊断科,北京 100853)
关键词:
人工智能深度学习心脏磁共振成像心血管疾病
Keywords:
Artificial intelligence Deep learning Cardiovascular magnetic resonance Cardiovascular disorders
DOI:
10.16806/j.cnki.issn.1004-3934.2019.05.001
摘要:
心血管成像的技术正在迅速增长,临床医生和研究人员也有比以往更多的机会参与开发和评价新的图像分析算法。心血管影像数据库的规模和维度不断扩大,这促使人们对应用强大的深度学习方法来分析这些数据产生了浓厚的兴趣。尽管目前存在技术和逻辑方面的挑战,但机器学习,特别是深度学习,必将对心血管成像未来的科学实践产生重大影响。在此,做一综述,便于大家理解当前和未来机器学习和深度学习在日益丰富的心血管成像领域中的应用。
Abstract:
Cardiovascular imaging technology is growing rapidly, and clinicians and researchers have more opportunities than ever to participate in the development and evaluation of new image analysis algorithms. The growing size and dimension of cardiovascular databases has led to an interest in using powerful deep learning methods to analyze these data. Despite current technical and logical challenges, the machine learning, particularly deep learning, will have a significant impact on the future scientific practice of cardiovascular imaging. Here, we provide an overview to help you understand the current and future applications of machine learning and deep learning in the increasingly rich field of cardiovascular imaging

参考文献/References:

]



[1] Massalha S,Clarkin O,Thornhill R,et al. Decision support tools, systems, and artificial intelligence in cardiac imaging [J]. Can J Cardiol,2018,34:827-838.

[2] Chartrand G,Cheng PM,Vorontsov E,et al. Deep learning:a primer for radiologists[J]. Radiographics,2017,37:2113-2131.

[3] Garcia EV,Klein JL,Taylor AT. Clinical decision support systems in myocardial perfusion imaging[J]. J Nucl Cardiol ,2014,21:427-439.

[4] Jiang J,Trundle P,Ren J,et al. Medical imaging analysis with artificial neural networks[J]. Comput Med Imaging Graph ,2010,34:617-631.

[5] Dilsizian SE,Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment[J]. Curr Cardiol Rep ,2014,16:441.

[6] Peng P,Lekadir K,Gooya A,et al. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging[J]. MAGMA,2016,29:155-195.

[7] Margeta J,Schaeffter T,Tobon-Gomez C,et al. Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets [J].IEEE Trans Med Imaging,2015,34:1460-1473.

[8] Shang L,Lv JC,Yi Z. Rigid medical image registration using PCA neural network[J]. Neurocomputing,2006,69:1717-1722.

[9] Jaiswal RR, Gaikwad AN. Neural network assisted effective lossy compression of medical images[J]. Iete Tech Rev ,2006,23:119-126.

[10] Suzuki K,Abe H,MacMahon H,et al . Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN)[J]. IEEE Trans Med Imaging,2006,25:406-416.

[11] Hainc L,Kukal J. Role of robust processing in ANN denoising of 2D image[J]. Neural Network World,2006,16:163-176.

[12] Meftah B,Lezoray O,Benyettou A. Segmentation and edge detection based on spiking neural network model[J]. Neural Process Lett,2010,32:131-146.

[13] Kim Y,Chung Y,Hyeon Y. Biomedical signal processing and control automatic localization of anatomical landmarks in cardiac MR perfusion using random forests[J]. Biomed Signal Process Control,2017,38:370-378.

[14] Kurkure U,Pednekar A,Muthupillai R,et al . Localization and segmentation of left ventricle in cardiac cine-MR images[J]. IEEE Trans Biomed Eng,2009,56:1360-1370.

[15] Grosgeorge D,Petitjean C,Caudron J,et al . Automatic cardiac ventricle segmentation in MR images:a validation study [J]. Int J Comput Assist Radiol Surg, 2011,6:573-581.

[16] Angelie E,Koning PJH,Danilouchkine MG,et al. Optimizing the automatic segmentation of the left ventricle in magnetic resonance images[J].Med Phys,2005,32(2):369-375.

[17] Yang F,He Y,Hussain M,et al. Convolutional neural network for the detection of end-diastole and end-systole frames in free-breathing cardiac magnetic resonance imaging[J]. Comput Math Methods Med ,2017,2017:1640835.

[18] Haddad F,Doyle R,Murphy DJ,et al . Right ventricular function in cardiovascular disease, part Ⅱ. Pathophysiology,clinical importance,and management of right ventricular failure [J]. Circulation,2008,117:1717-1731.

[19] Sanz J, Conroy J, Narula J. Imaging of the right ventricle[J]. Cardiol Clin ,2012,30:189-203.

[20] Vitarelli A,Terzano C. Do we have two hearts? N ew insights in right ventricular function supported by myocardial imaging echocardiography[J]. Heart Fail Rev,2010,15:39-61.

[21] Petitjean C,Zuluaga MA,Bai W,et al. Right ventricle segmentation from cardiac MRI:a collation study [J]. Med Image Anal,2015,19:187-202.

[22] Petitjean C,Dacher JN. A review of segmentation methods in short axis cardiac MR images[J]. Med Image Anal,2011,15:169-184.

[23] Grosgeorge D,Petitjean C,Dacher JN,et al . Graph cut segmentation with a statistical shape model in cardiac MRI[J]. Comput Vis Image Underst,2013,117:1027-1035.

[24] Ringenberg J, Deo M, Devabhaktuni V, et al. Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI[J]. Comput Med Imaging Graph , 2014,38:190-201.

[25] Avendi MR,Kheradvar A,Jafarkhani H. Automatic segmentation of the right ventricle from cardiac MRI using a learining-based approach[J]. Magn Reson Med ,2017,86(6):2439-2448.

[26] Tao Q,Yan W,Wang Y,et al. Deep learning-based method for fully automatic quantification of left ventricular function from Cine MR images:a multivendor, multicenter study [J]. Radiology,2019,290(1):81-88.

[27] Greenwood JP,Motwani M,Maredia N,et al. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease(CE-MARC) Trial[J]. Circulation,2014,129(10):1129-1138.

[28] Tarroni G,Corsi C,Antkowiak PF,et al. Myocardial perfusion: near-automated evaluation from contrast-enhanced MR images obtained at rest and during vasodilator stress[J]. Radiology,2012,265(2):576-583.

[29] Goel A,McColl R,King KS,et al . Fully automated tool to identify the aorta and compute flow using phase-contrast MRI:validation and application in a large population based study [J]. J Magn Reson Imaging ,2014,40:221-228.

[30] Karim R,Housden RJ,Balasubramaniam M,et al. Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge[J]. J Cardiovasc Magn Reson ,2013,15:105.

[31] Karim R,Bhagirath P,Claus P,et al. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images[J]. Med Image Anal,2016,30:95-107.

[32] Slomka PJ,Dey D,Sitek A,et al. Cardiac imaging:working towards fully-automated machine analysis & interpretation[J]. Expert Rev Med Devices ,2017,14(3):197-212.

[33] Zhang N,Yang G,Gao ZF,et al. Deep learning for diagnosis of chronic myocardial infarction on nonehanced cardiac Cine MRI [J]. Radiology,2019,291(3):606-617.

[34] Betancur J, Commandeur F, Motlagh M. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT,a multicenter study [J]. JACC Cardiovasc Imaging ,2018,11 (11):1654-1663.

相似文献/References:

[1]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(5):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[2]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(5):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[3]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
 WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(5):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
[4]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
 LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(5):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[5]艾克力亚尔·艾尼瓦尔 马翔.机器学习CNN模型在心血管疾病诊疗中的临床应用及研究进展[J].心血管病学进展,2021,(6):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
 Aikeliyaer.ainiwaerMA xiang.Application of Convolutional Neural Network Model of Machine Learning for the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(5):488.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.003]
[6]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
 WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(5):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[7]凯赛尔江·卡地尔 艾克力亚尔·艾尼瓦尔 秦练 热娜·热合木丁 马翔.深度学习在冠心病影像学诊断的研究进展[J].心血管病学进展,2022,(4):335.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.012]
 Kaisaierjiang Kadier,Aikeliyaer Ainiwae,rQIN Lian,et al.Deep Learning in Imaging Diagnosis of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2022,(5):335.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.012]
[8]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
 HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(5):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[9]孜拉来·艾尼瓦尔 周贤惠.无症状性心房颤动检测设备的研究进展[J].心血管病学进展,2022,(7):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 Zilalai AiniwarZHOU Xianhui.Detection Devices of Asymptomatic Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(5):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[10]陈忠秀 李娅姣 李春梅 李晨.无导丝虚拟血流储备分数技术在稳定性冠心病介入治疗中的指导价值[J].心血管病学进展,2022,(10):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
 CHEN Zhongxiu,LI Yajiao,LI Chunmei,et al.The Value of Wireless Virtual Fractional Flow Reserve in Guiding Percutaneous Coronary Intervention in Stable Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2022,(5):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
[11]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(5):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[12]屈展 刘凯.人工智能技术在高血压诊疗中的应用进展[J].心血管病学进展,2023,(1):48.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 QU Zhan,LIU Kai.Applications of Artificial Intelligence for Hypertension Management[J].Advances in Cardiovascular Diseases,2023,(5):48.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]

更新日期/Last Update: 2019-12-23