[1]王晓群 张瑞岩.酮体代谢在心脏中的病理生理作用及相关治疗进展[J].心血管病学进展,2023,(11):973.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.004]
 WANG Xiaoqun,ZHANG Ruiyan.Ketone Metabolism in Heart: Pathophysiological Mechanism and Ketone Therapy[J].Advances in Cardiovascular Diseases,2023,(11):973.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.004]
点击复制

酮体代谢在心脏中的病理生理作用及相关治疗进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
973
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
Ketone Metabolism in Heart: Pathophysiological Mechanism and Ketone Therapy
作者:
王晓群 张瑞岩
(上海交通大学附属瑞金医院心内科,上海 200025)
Author(s):
WANG Xiaoqun ZHANG Ruiyan
(Department of Cardiovascular Medicine,Ruijin Hospital,Shanghai Jiaotong University,Shanghai 200025,China)
关键词:
酮体代谢心脏治疗
Keywords:
Ketone bodiesMetabolismHeartTreatment
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.004
摘要:
酮体在人体器官的能量供应中发挥着重要作用。由于心脏具有快速改变底物利用的代谢灵活性,在某些生理或病理状态下,心脏可适应性地增加酮体的摄取和利用以持续供能。此外,酮体还具有抑制氧化应激、减轻炎症、促进血管内皮细胞增殖和改善心脏重构等多种心血管保护作用。因此,适度升高血(循环?)酮(体?)(循环酮体需要全文统一吗?)水平可能具备治疗心脏疾病的临床应用前景。尤其是慢性、长期的升酮方式,可能为心力衰竭等心血管疾病的患者提供临床获益。
Abstract:
Ketone bodies are endogenously synthetized metabolites that become significant contributors to energy metabolism in human organs. The heart is metabolically flexible and can readily shift between different energy substrates to maintain energy production. The consumption and utilization of myocardial ketone bodies is increased during pathological and physiological conditions. In addition,it was found that ketone bodies play multiple protective roles in cardiovascular system,such as inhibiting oxidative stress,alleviating inflammation,promoting vascular endothelial cell proliferation and improving cardiac remodeling. Therefore,moderately increasing blood ketone body levels may have clinical application prospects for treating heart diseases. Especially chronic and long-term elevation of blood ketone body level may provide clinical benefits for patients with cardiovascular diseases such as heart failure

参考文献/References:

[1] Horton JL,Davidson MT,Kurishima C,et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense[J]. JCI Insight,2019,4(4):e124079.

[2] Kolb H,Kempf K,R?hling M,et al. Ketone bodies:from enemy to friend and guardian angel[J]. BMC Med,2021,19(1):313.

[3] Murashige D,Jang C,Neinast M,et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart[J]. Science,2020,370(6514):364-368.

[4] Ho KL,Karwi QG,Wagg C,et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency[J]. Cardiovasc Res,2021,117(4):1178-1187.

[5] Gormsen LC,Svart M,Thomsen HH,et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans:a positron emission tomography study[J]. J Am Heart Assoc,2017,6(3):e005066.

[6] Bedi KC Jr,Snyder NW,Brandimarto J,et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure[J]. Circulation,2016,133(8):706-716.

[7] Voros G,Ector J,Garweg C,et al. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling[J]. Circ Heart Fail,2018,11(12):e004953.

[8] Schugar RC,Moll AR,André d’Avignon D,et al. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling[J]. Mol Metab,2014,3(7):754-769.

[9] Yurista SR,Matsuura TR,Silljé HHW,et al. Ketone ester treatment improves cardiac function and reduces pathologic remodeling in preclinical models of heart failure[J]. Circ Heart Fail,2021,14(1):e007684.

[10] Nagao M,Toh R,Irino Y,et al. β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes[J]. Biochem Biophys Res Commun,2016,475(4):322-328.

[11] Uchihashi M,Hoshino A,Okawa Y,et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure[J]. Circ Heart Fail,2017,10(12):e004417.

[12] Byrne NJ,Soni S,Takahara S,et al. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure[J]. Circ Heart Fail,2020,13(6):e006573.

[13] Deng Y,Xie M,Li Q,et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF[J]. Circ Res,2021,128(2):232-245.

[14] Weis EM,Puchalska P,Nelson AB,et al. Ketone body oxidation increases cardiac endothelial cell proliferation[J]. EMBO Mol Med,2022,14(4):e14753.

[15] Lindsay RT,Dieckmann S,Krzyzanska D,et al. β-hydroxybutyrate accumulates in the rat heart during low-flow ischaemia with implications for functional recovery[J]. Elife,2021,10:e71270.

[16] Yu Y,Yu Y,Zhang Y,et al. Treatment with D-β-hydroxybutyrate protects heart from ischemia/reperfusion injury in mice[J]. Eur J Pharmacol,2018,829:121-128.

[17] Yurista SR,Silljé HHW,Oberdorf-Maass SU,et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction[J]. Eur J Heart Fail,2019,21(7):862-873.

[18] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates adverse left?ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2019,73(15):1931-1944.

[19] de Koning MLY,Westenbrink BD,Assa S,et al. Association of circulating ketone bodies?with functional outcomes after?ST-segment elevation myocardial?infarction[J]. J Am Coll Cardiol,2021,78(14):1421-1432.

[20] Qian N,Wang Y. Ketone body metabolism in diabetic and non-diabetic heart failure[J]. Heart Fail Rev,2020, 25(5):817-822.

[21] Mizuno Y,Harada E,Nakagawa H,et al. The diabetic heart utilizes ketone bodies as an energy source[J]. Metabolism,2017,77:65-72.

[22] Qi H,Gu L,Xu D,et al. β-Hydroxybutyrate inhibits cardiac microvascular collagen 4 accumulation by attenuating oxidative stress in streptozotocin-induced diabetic rats and high glucose treated cells[J]. Eur J Pharmacol,2021,899:174012.

[23] Nakamura M,Odanovic N,Nakada Y,et al. Dietary carbohydrates restriction inhibits the development of cardiac hypertrophy and heart failure[J]. Cardiovasc Res,2021,117(11):2365-2376.

[24] Guo Y,Liu X,Li T,et al. Alternate-day ketogenic diet feeding protects against heart failure through preservation of ketogenesis in the liver[J]. Oxid Med Cell Longev,2022,2022:4253651.

[25] Luo W,Zhang J,Xu D,et al. Low carbohydrate ketogenic diets reduce cardiovascular risk factor levels in obese or overweight patients with T2DM:a meta-analysis of randomized controlled trials[J]. Front Nutr,2022,9:1092031.

[26] Tragni E,Vigna L,Ruscica M,et al. Reduction of cardio-metabolic risk and body weight through a multiphasic very-low calorie ketogenic diet program in women with overweight/obesity:a study in a real-world setting[J]. Nutrients,2021,13(6):1804.

[27] Tzenios N,Lewis ED,Crowley DC,et al. Examining the efficacy of a very-low-carbohydrate ketogenic diet on cardiovascular health in adults with mildly elevated low-density lipoprotein cholesterol in an open-label pilot study[J]. Metab Syndr Relat Disord,2022,20(2):94-103.

[28] Guo Y,Zhang C,Shang FF,et al. Ketogenic diet ameliorates cardiac dysfunction via balancing mitochondrial dynamics and inhibiting apoptosis in type 2 diabetic mice[J]. Aging Dis,2020,11(2):229-240.

[29] Xu S,Tao H,Cao W,et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis[J]. Signal Transduct Target Ther,2021,6(1):54.

[30] Tao J,Chen H,Wang YJ,et al. Ketogenic diet suppressed T-regulatory cells and promoted cardiac fibrosis via reducing mitochondria-associated membranes and inhibiting mitochondrial function[J]. Oxid Med Cell Longev,2021,2021:5512322.

[31] Nielsen R,M?ller N,Gormsen LC,et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation,2019,139(18):2129-2141.

[32] Monzo L,Sedlacek K,Hromanikova K,et al. Myocardial ketone body utilization in patients with heart failure:The impact of oral ketone ester[J]. Metabolism,2021,115:154452.

[33] Ho KL,Zhang L,Wagg C,et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency[J]. Cardiovasc Res,2019,115(11):1606-1616.

[34] Ferrannini E,Baldi S,Frascerra S,et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes[J]. Diabetes,2016,65(5):1190-1195.

[35] Singh JSS,Mordi IR,Vickneson K,et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure:the REFORM trial[J]. Diabetes Care,2020,43(6):1356-1359.

[36] Kim SR,Lee SG,Kim SH,et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease[J]. Nat Commun,2020,11(1):2127.

[37] Pietschner R,Kolwelter J,Bosch A,et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure[J]. Cardiovasc Diabetol,2021,20(1):219.

[38] Voorrips SN,Boorsma EM,Beusekamp JC,et al. Longitudinal changes in circulating ketone body levels in patients with acute heart failure:a post hoc analysis of the EMPA-Response-AHF trial[J]. J Card Fail,2023,29(1):33-41.

[39] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart?failure:a Multimodality study[J]. JACC Cardiovasc Imaging,2021,14(2):393-407.

相似文献/References:

[1]史文轲 谢赛阳 邓伟.支链氨基酸与心血管疾病的研究进展[J].心血管病学进展,2023,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.009]
 SHI wenke,XIE Saiyang,DENG Wei.Branched-Chain Amino Acid and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(11):326.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.009]

更新日期/Last Update: 2023-12-13