[1]褚松筠 周菁.内脏神经阻滞治疗射血分数保留性心力衰竭[J].心血管病学进展,2023,(5):385.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.001]
 CHU Songyun,ZHOU Jing.Splanchnic Nerve Block in Management of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2023,(5):385.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.001]
点击复制

内脏神经阻滞治疗射血分数保留性心力衰竭()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年5期
页码:
385
栏目:
综述
出版日期:
2023-05-25

文章信息/Info

Title:
Splanchnic Nerve Block in Management of Heart Failure with Preserved Ejection Fraction
作者:
褚松筠 周菁
北京大学第一医院心内科,北京 100034
Author(s):
CHU Songyun ZHOU Jing
(Department of Cardiology, Peking University First Hospital,Beijing 100034,China)
关键词:
内脏神经阻滞射血分数保留性心力衰竭血容量
Keywords:
Splanchnic nerve blockHeart failure with preserved ejection fractionblood volume
DOI:
10.16806/j.cnki.issn.1004-3934.2023.05.001
摘要:
静息和活动期间左室充盈压升高是射血分数保留性心力衰竭 (HFpEF) 的关键标志。静脉系统虽然在决定心脏充盈压和调节心输出量方面起到主要作用,但很少受到关注。近年来 不少学者认识到静脉系统受内脏神经调节的容量和张力改变对于左室充盈压和心输出量的影响,并进行了内脏神经调节对射血分数保留性心力衰竭患者的治疗探索,现对此进行综述。
Abstract:
Elevated cardiac filling pressures are pivotal characteristics in patients with heart failure with preserved ejection fraction(HFpEF) at rest and during exertion. The venous system has received very little attention despite its primary role in determining cardiac filling pressures and regulating cardiac output. Splanchnic nerve block emerged as an approach for modulation stressed venous blood volume and filling pressure. Splanchnic nerve block has also been explored for potential therapy for HFpEF,which is reviewed here.

参考文献/References:


[1] Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol,2014,11(9):507-515.

[2] Fudim M,Sobotka PA,Dunlap ME. Extracardiac abnormalities of preload reserve:mechanisms underlying exercise limitation in heart failure with preserved ejection fraction,autonomic dysfunction,and liver disease[J]. Circ Heart Fail,2021,14(1):e007308.

[3] Manyari DE,Wang Z,Cohen J,et al. Assessment of the human splanchnic venous volume-pressure relation using radionuclide plethysmography. Effect of nitroglycerin[J]. Circulation,1993,87(4):1142-1151.

[4] Birch DJ,Turmaine M,Boulos PB,et al. Sympathetic innervation of human mesenteric artery and vein[J]. J Vasc Res,2008,45(4):323-332.

[5] Maas JJ,Pinsky MR,Aarts LP,et al. Bedside assessment of total systemic vascular compliance,stressed volume,and cardiac function curves in intensive care unit patients[J]. Anesth Analg,2012,115(4):880-887.

[6] Fudim M,Kaye DM,Borlaug BA,et al. Venous tone and stressed blood volume in heart failure:JACC review topic of the week[J]. J Am Coll Cardiol ,2022,79(18):1858-1869.

[7] Rothe CF. Physiology of venous return. An unappreciated boost to the heart[J]. Arch Intern Med,1986,146(5):977-982.

[8] Gelman S,Mushlin PS. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics[J]. Anesthesiology,2004,100(2):434-439.

[9] Fudim M,Hernandez AF,Felker GM. Role of volume redistribution in the congestion of heart failure[J]. J Am Heart Assoc,2017,6(8)):e006817.

[10] Fallick C,Sobotka PA,Dunlap ME. Sympathetically mediated changes in capacitance:redistribution of the venous reservoir as a cause of decompensation[J]. Circ Heart Fail,2011,4(5):669-675.

[11] Kaye DM,Wolsk E,Nanayakkara S,et al. Comprehensive physiological modeling provides novel insights into heart failure with preserved ejection fraction physiology[J]. J Am Heart Assoc,2021,10(19):e021584.

[12] Doshi D,Burkhoff D. Cardiovascular simulation of heart failure pathophysiology and therapeutics[J]. J Card Fail,2016,22(4):303-311.

[13] Fudim M,Patel MR,Boortz-Marx R,et al. Splanchnic nerve block mediated changes in stressed blood volume in heart failure[J]. JACC Heart Fail,2021,9(4):293-300.

[14] Sorimachi H,Burkhoff D,Verbrugge FH,et al. Obesity,venous capacitance,and venous compliance in heart failure with preserved ejection fraction[J]. Eur J Heart Fail,2021,23(10):1648-1658.

[15] Redfield MM,Anstrom KJ,Levine JA,et al. Isosorbide mononitrate in heart failure with preserved ejection fraction[J]. N Engl J Med,2015,373(24):2314-2324.

[16] Reddy YNV,Andersen MJ,Obokata M,et al. Arterial stiffening with exercise in patients with heart failure and preserved ejection fraction[J]. J Am Coll Cardiol,2017,70(2):136-148.

[17] Kaye DM,Nanayakkara S,Vizi D,et al. Effects of milrinone on rest and exercise hemodynamics in heart failure with preserved ejection fraction[J]. J Am Coll Cardiol,2016,67(21):2554-2556.

[18] Kaye DM,Byrne M,Mariani J,et al. Identification of physiologic treatment targets with favourable haemodynamic consequences in heart failure with preserved ejection fraction[J]. ESC Heart Fail,2020,7(6):3685-3693.

[19] Rieg AD,Suleiman S,Perez-Bouza A,et al. Milrinone relaxes pulmonary veins in guinea pigs and humans[J]. PLoS One,2014,9(1):e87685.

[20] Burkhoff D,Borlaug BA,Shah SJ,et al. Levosimendan improves hemodynamics and exercise tolerance in PH-HFpEF:results of the randomized placebo-controlled help trial[J]. JACC Heart Fail,2021,9(5):360-370.

[21] Brener MI,Hamid NB,Sunagawa K,et al. Changes in stressed blood volume with levosimendan in pulmonary hypertension from heart failure with preserved ejection fraction:insights regarding mechanism of action from the HELP trial[J]. J Card Fail,2021,27(9):1023-1026.

[22] H?hn J,Pataricza J,Petri A,et al. Levosimendan interacts with potassium channel blockers in human saphenous veins[J]. Basic Clin Pharmacol Toxicol,2004,94(6):271-273.

[23] Barnes RJ,Bower EA,Rink TJ. Haemodynamic responses to stimulation of the splanchnic and cardiac sympathetic nerves in the anaesthetized cat[J]. J Physiol,1986,378:417-436.

[24] Bapna A,Adin C,Engelman ZJ,et al. Increasing blood pressure by greater splanchnic nerve stimulation:a feasibility study[J]. J Cardiovasc Transl Res,2020,13(4):509-518.

[25] Fudim M,Yalamuri S,Herbert JT,et al. Raising the pressure:hemodynamic effects of splanchnic nerve stimulation[J]. J Appl Physiol(1985),2017,123(1):126-127.

[26] Fudim M,Khan MS,Paracha AA,et al. Targeting preload in heart failure:splanchnic nerve blockade and beyond[J]. Circ Heart Fail,2022,15(3):e009340.

[27] Fudim M,Ponikowski PP,Burkhoff D,et al. Splanchnic nerve modulation in heart failure:mechanistic overview,initial clinical experience,and safety considerations[J]. Eur J Heart Fail,2021,23(7):1076-1084.

[28] Fudim M,Ganesh A,Green C,et al. Splanchnic nerve block for decompensated chronic heart failure:splanchnic-HF[J]. Eur Heart J,2018,39(48):4255-4256.

[29] Fudim M,Boortz-Marx RL,Ganesh A,et al. Splanchnic nerve block for chronic heart failure[J]. JACC Heart Fail,2020,8(9):742-752.

[30] Málek F,Gajewski P,Zymliáski R,et al. Surgical ablation of the right greater splanchnic nerve for the treatment of heart failure with preserved ejection fraction:first-in-human clinical trial[J]. Eur J Heart Fail,2021,23(7):1134-1143.

[31] Gajewski P,Fudim M,Kittipibul V,et al. Early hemodynamic changes following surgical ablation of the right greater splanchnic nerve for the treatment of heart failure with preserved ejection fraction[J]. J Clin Med,2022,11(4):1063.

[32] Fudim M,Zirakashvili T,Shaburishvili N,et al. Transvenous right greater splanchnic nerve ablation in heart failure and preserved ejection fraction:first-in-human study[J]. JACC Heart Fail,2022,10(10):744-752.

[33] Mahfoud F,Townsend RR,Kandzari DE,et al. Changes in plasma renin activity after renal artery sympathetic denervation[J]. J Am Coll Cardiol,2021,77(23):2909-2919.

[34] Hansen L,Lampert S,Mineo H,et al. Neural regulation of glucagon-like peptide-1 secretion in pigs[J]. Am J Physiol Endocrinol Metab,2004,287(5):E939-E947.

[35] Endovascular ablation of the right greater splanchnic nerve in subjects having HFpEF- ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04592445.

[36] Fudim M,Fail PS,Litwin SE,et al. Endovascular ablation of the right greater splanchnic nerve in heart failure with preserved ejection fraction:early results of the REBALANCE-HF trial roll-in cohort[J]. Eur J Heart Fail,2022,24(8):1410-1414.

相似文献/References:

[1]孙慧雪 郑美芳 李海 孙磊 顾翔.远程医疗应用于射血分数保留性心力衰竭的现状及进展[J].心血管病学进展,2020,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
 SUN Huixue,ZHENG Meifang,LI Hai,et al.Status Progress of Telemedicine in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(5):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
[2]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
 FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(5):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[3]高可 杨蕾 姚新叶 郑小璞.射血分数保留性心力衰竭动物模型的研究进展[J].心血管病学进展,2020,(8):834.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.013]
 GAO Ke,YANG Lei,YAO Xinye,et al.Advances in Animal Models ofHeart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(5):834.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.013]
[4]刘春秋 熊双 刘剑刚 董国菊.射血分数保留性心力衰竭的诊断的研究进展[J].心血管病学进展,2021,(9):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 LIU Chunqiu,XIONG Shuang,LIU Jiangang,et al.Diagnosis of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2021,(5):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[5]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
 SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(5):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[6]赵菲 刘永铭.抗炎类药物对射血分数保留性心力衰竭患者心外膜脂肪组织的影响[J].心血管病学进展,2022,(1):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
 ZHAO Fei,LIU Yongming.Effects of Anti-Inflammatory Drugs on Epicardial Adipose Tissue in Patients with Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(5):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
[7]张文珺 牛小伟 刘永铭.m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展[J].心血管病学进展,2022,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
 ZHANG Wenjun,NIU Xiaowei,LIU Yongming.m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(5):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
[8]聂琼 吴镜.射血分数保留性心力衰竭:从机制到治疗[J].心血管病学进展,2022,(3):258.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2022.03.0170]
 NIE Qiong,WU Jing.Heart Failure with Preserved Ejection Fraction:from Mechanism to Treatment[J].Advances in Cardiovascular Diseases,2022,(5):258.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2022.03.0170]
[9]卢甜甜 张轶.射血分数保留性心力衰竭左心室心肌力学变化及评估的研究进展[J].心血管病学进展,2022,(4):331.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.011]
 LU Tiantian,ZHANG Yi?/html>.Changes and Evaluation of Left Ventricular Myocardial Mechanical?n Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(5):331.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.011]
[10]时利英 蒋晖.运动训练在射血分数保留性心力衰竭的应用进展[J].心血管病学进展,2022,(4):344.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.014]
 SHI liying,JIANG hui.Exercise-Based Rehabilitation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(5):344.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.014]

更新日期/Last Update: 2023-06-29