[1]刘江文 杨双 唐艳红 黄从新.生物起搏细胞调控方法的研究进展[J].心血管病学进展,2022,(3):203-206.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LIU Jiangwen,YANG Shuang,TANG Yanhong,et al.Regulation of Biological Pacemaker Cells[J].Advances in Cardiovascular Diseases,2022,(3):203-206.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
点击复制

生物起搏细胞调控方法的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年3期
页码:
203-206
栏目:
综述
出版日期:
2022-03-25

文章信息/Info

Title:
Regulation of Biological Pacemaker Cells
文章编号:
202111038
作者:
刘江文 杨双 唐艳红 黄从新
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
LIU JiangwenYANG ShuangTANG YanhongHUANG Congxin
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute of Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
生物起搏基因调控联合基因转染
Keywords:
Biological pacemakerGene regulationCombined gene transfection
DOI:
10.16806/j.cnki.issn.1004-3934.2022.03.000
摘要:
自从电子起搏器进入临床以来,无数房室传导阻滞和病态窦房结综合征患者的生活质量得到了极大改善,但它仍存在感染、缺乏生理反应性和电池寿命有限等问题。生物起搏就此应运而生,生物起搏核心的问题是获得和正常窦房结细胞具有相同功能的起搏细胞,目前调控生物起搏细胞生成的方法多种多样,例如可通过单基因、多基因联合以及信号通路调控等方法来构建生物起搏细胞,现就当前生物起搏细胞的调控方法做一综述。
Abstract:
Since the electronic pacemaker entered the clinic,the quality of life of countless patients with atrioventricular block and sick sinus syndrome has been greatly improved,but it still has some problems,such as infection,lack of physiological reactivity and limited battery life. Biological pacemaker aims to solve these problems,and its core issue is to acquire pacemaker cells with the same function as normal sinoatrial node cells. There are many ways to regulate biological pacemaker cell s,such as single-gene,multigene combination and signal pathway regulation and so on. This paper reviews the current regulation methods of biological pacemaker cell s

参考文献/References:

[1] Mulpuru SK,Madhavan M,McLeod CJ,et al. Cardiac pacemakers:function,troubleshooting,and management:part 1 of a 2-part series[J]. J Am Coll Cardiol,2017,69(2):189-210.

[2] Saito Y,Nakamura K,Yoshida M,et al. Enhancement of spontaneous activity by HCN4 overexpression in mouse embryonic stem cell-derived cardiomyocytes—A possible biological pacemaker[J]. PLoS One,2015,10(9):e138193.

[3] Kraus F,Haenig B,Kispert A. Cloning and expression analysis of the mouse T-box gene Tbx18[J]. Mech Dev,2001,100(1):83-86.

[4] Wiese C,Grieskamp T,Airik R,et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3[J]. Circ Res,2009,104(3):388-397.

[5] Engleka KA,Manderfield LJ,Brust RD,et al. Islet1 derivatives in the heart are of both neural crest and second heart field origin[J]. Circ Res,2012,110(7):922-926.

[6] Pandur P,Sirbu IO,Kühl SJ,et al. Islet1-expressing cardiac progenitor cells:a comparison across species[J]. Dev Genes Evol,2013,223(1-2):117-129.

[7] Espinoza-Lewis RA,Yu L,He F,et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5[J]. Dev Biol,2009,327(2):376-385.

[8] Barbuti A,Robinson RB. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool:insights from sinoatrial node development and function[J]. Pharmacol Rev,2015,67(2):368-388.

[9] Hashem SI,Lam ML,Mihardja SS,et al. Shox2 regulates the pacemaker gene program in embryoid bodies[J]. Stem Cells Dev,2013,22(21):2915-2926.

[10] Shi W,Wymore R,Yu H,et al. Distribution and prevalence of hyperpolarization-activated cation channel(HCN) mRNA expression in cardiac tissues[J]. Circ Res,1999,85(1):e1-e6.

[11] Verkerk AO,Wilders R. Hyperpolarization-activated current,If,in mathematical models of rabbit sinoatrial node pacemaker cells[J]. Biomed Res Int,2013,2013:872454.

[12] Kaupp UB,Seifert R. Molecular diversity of pacemaker ion channels[J]. Annu Rev Physiol,2001,63:235-257.

[13] Gorabi AM,Hajighasemi S,Tafti HA,et al. TBX18 transcription factor overexpression in human-induced pluripotent stem cells increases their differentiation into pacemaker-like cells[J]. J Cell Physiol,2019,234(2):1534-1546.

[14] Boink GJ,Christoffels VM,Robinson RB,et al. The past,present,and future of pacemaker therapies[J]. Trends Cardiovasc Med,2015,25(8):661-673.

[15] Cingolani E,Goldhaber JI,Marbán E. Next-generation pacemakers:from small devices to biological pacemakers[J]. Nat Rev Cardiol,2018,15(3):139-150.

[16] Ionta V,Liang W,Kim EH,et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells,improving biological pacing ability[J]. Stem Cell Reports,2015,4(1):129-142.

[17] Kapoor N,Liang W,Marbán E,et al. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18[J]. Nat Biotechnol,2013,31(1):54-62.

[18] Bakker ML,Boink GJJ,Boukens BJ,et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells[J]. Cardiovasc Res,2012,94(3):439-449.

[19] Zhang J,Yang M,Yang AK,et al. Insulin gene enhancer binding protein 1 induces adipose tissue-derived stem cells to differentiate into pacemaker-like cells[J]. Int J Mol Med,2019,43(2):879-889.

[20] Yang M,Zhang GG,Wang T,et al. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment[J]. Int J Mol Med,2016,38(5):1403-1410.

[21] Zhang J,Huang C. A new combination of transcription factors increases the harvesting efficiency of pacemaker?like cells[J]. Mol Med Rep,2019,19(5):3584-3592.

[22] Boogerd CJ,Wong LY,van den Boogaard M,et al. Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43[J]. Cell Mol Life Sci,2011,68(23):3949-3961.

[23] Zhao H,Wang F,Zhang W,et al. Overexpression of TBX3 in human induced pluripotent stem cells(hiPSCs) increases their differentiation into cardiac pacemaker-like cells[J]. Biomed Pharmacother,2020,130:110612.

[24] Zhao H,Wang F,Tang Y,et al. HCN2 and TBX3 reprogram human-induced pluripotent stem cells-derived cardiomyocytes into pacemaker-like cells[J]. DNA Cell Biol,2020,39(2):289-298.

[25] Raghunathan S,Islas JF,Mistretta B,et al. Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells[J]. J Mol Cell Cardiol,2020,138:12-22.

[26] Klaus A,Müller M,Schulz H,et al. Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells[J]. Proc Natl Acad Sci U S A , 2012,109(27):10921-10926.

[27] Klaus A,Saga Y,Taketo MM,et al. Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis[J]. Proc Natl Acad Sci U S A,2007,104(47):18531-18536.

[28] Cohen ED,Tian Y,Morrisey EE. Wnt signaling:an essential regulator of cardiovascular differentiation,morphogenesis and progenitor self-renewal[J]. Development,2008,135(5):789-798.

[29] Zhang H,Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development[J]. Development,1996,122(10):2977-2986.

[30] Solloway MJ,Robertson EJ. Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup[J]. Development,1999,126(8):1753-1768.

[31] Liang W,Han P,Kim EH,et al. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells[J]. Stem Cells,2020,38(3):352-368.

[32] Ren J,Han P,Ma X,et al. Canonical Wnt5b signaling directs outlying Nkx2.5+ mesoderm into pacemaker cardiomyocytes[J]. Dev Cell,2019,50(6):729-743.

[33] Lian X,Hsiao C,Wilson G,et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling[J]. Proc Natl Acad Sci U S A, 2012,109(27):E1848-E1857.

[34] Protze SI,Liu J,Nussinovitch U,et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker[J]. Nat Biotechnol,2017,35(1):56-68.

[35] Lee JH,Protze SI,Laksman Z,et al. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations[J]. Cell Stem Cell,2017,21(2):179-194.

[36] Hu YF,Dawkins JF,Cho HC,et al. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block[J]. Sci Transl Med,2014,6(245):245ra94.

更新日期/Last Update: 2022-04-20