[1]胡艺千 杨波.离子型谷氨酸受体参与心脏系统疾病发生发展的研究进展[J].心血管病学进展,2025,(3):230.[doi:10.16806/j.cnki.issn.1004-3934.2025.03.009]
 HU Yiqian,YANG Bo.Ionic Glutamate Receptor Involved in Development of Cardiac Diseases[J].Advances in Cardiovascular Diseases,2025,(3):230.[doi:10.16806/j.cnki.issn.1004-3934.2025.03.009]
点击复制

离子型谷氨酸受体参与心脏系统疾病发生发展的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年3期
页码:
230
栏目:
综述
出版日期:
2025-03-25

文章信息/Info

Title:
Ionic Glutamate Receptor Involved in Development of Cardiac Diseases
作者:
胡艺千 杨波
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
HU YiqianYANG Bo
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute of Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan,430060,Hubei,China)
关键词:
谷氨酸受体离子型受体心血管疾病
Keywords:
Glutamate receptorIonic receptorCardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2025.03.009
摘要:
心血管疾病是全球发病率与死亡率最高的疾病之一,其发病机制非常复杂。谷氨酸是一种能介导中枢神经系统兴奋性突触传播的神经递质。谷氨酸受体是一种离子型受体,存在于神经系统、心脏及部分外周器官,其主要介导兴奋性递质的传播,与钙内流、炎症发生、氧化应激等一系列反应相关,参与动脉粥样硬化性心脏病、高血压、心律失常等心血管疾病的发生发展。现综述离子型谷氨酸受体对心脏系统疾病发生发展的影响及其潜在的分子机制。
Abstract:
Cardiovascular disease is one of the highest morbidity and mortality diseases in the world,and its pathogenesis is very complex. Glutamate is a neurotransmitter that mediates excitatory synaptic transmission in the central nervous system. Glutamate receptor is an ionic receptor that exists in the nervous system,heart and some peripheral organs. It mainly mediates the transmission of excitatory transmitters and is related to a series of reactions such as calcium influx,inflammation,oxidative stress,etc.,and is involved in the occurrence and development of atherosclerotic heart disease,hypertension,arrhythmia and other cardiovascular diseases. This article reviews the effects of ionic glutamate receptors on the occurrence and development of cardiac diseases and their potential molecular mechanisms.

参考文献/References:

[1] Mahmoud S,Gharagozloo M,Simard C,et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release[J]. Cells,2019,8(2):184.

[2] Reiner A,Levitz J. Glutamatergic signaling in the central nervous system:ionotropic and metabotropic receptors in concert[J]. Neuron,2018,98(6):1080-1098.

[3] Wollmuth L. Structure and gating of the glutamate receptor ion channel[J]. Trends Neurosci,2004,27(6):321-328.

[4] Reilly S,Nattel S. Finding a new job:glutamate signaling acts in atrial cardiomyocytes[J]. Cell Res,2021,31(9):943-944.

[5] Furukawa H,Singh SK,Mancusso R,et al. Subunit arrangement and function in NMDA receptors[J]. Nature,2005,438(7065):185-192.

[6] Park DK,Stein IS,Zito K. Ion flux-independent NMDA receptor signaling[J]. Neuropharmacology,2022,210:109019.

[7] Provenzano F,Torazza C,Bonifacino T,et al. The key role of astrocytes in amyotrophic lateral sclerosis and their commitment to glutamate excitotoxicity[J]. Int J Mol Sci,2023,24(20):15430.

[8] Salzinger A,Ramesh V,Das Sharma S,et al. Neuronal circuit dysfunction in amyotrophic lateral sclerosis[J]. Cells,2024,13(10):792.

[9] Bowie D. The many faces of the AMPA-type ionotropic glutamate receptor[J]. Neuropharmacology,2022,208:108975.

[10] Filippini A,Bonini D,La Via L,et al. The good and the bad of glutamate receptor RNA editing[J]. Mol Neurobiol,2017,54(9),6795-6805.

[11] Khanra N,Brown PM,Perozzo A. M,et al. Architecture and structural dynamics of the heteromeric Gluk2/K5 kainate receptor[J]. Elife,2021,10:e66097.

[12] Goo MS,Scudder SL,Patrick GN. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors[J]. Front Mol Neurosci,2015,8:60.

[13] Purkey AM,Dell’Acqua ML. Phosphorylation-dependent regulation of Ca2+-permeable AMPA receptors during hippocampal synaptic plasticity[J]. Front Synaptic Neurosci,2020,12:8.

[14] Diering GH,Huganir RL. The AMPA receptor code of synaptic plasticity[J]. Neuron,2018,100(2):314-329.

[15] Soda T,Brunetti V,Berra-Romani R,et al. The emerging role of N-methyl-D-aspartate (NMDA)receptors in the cardiovascular system:physiological implications,pathological consequences,and therapeutic perspectives[J]. Int J Mol Sci,2023,24(4):3914.

[16] Schmitt N,Grunnet M,Olesen SP. Cardiac potassium channel subtypes:new roles in repolarization and arrhythmia[J]. Physiol Rev,2014,94(2):609-653.

[17] Shi S,Liu T,Wang D,et al. Activation of N-methyl-D-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats[J]. Europace,2017,19(7):1237-1243.

[18] Liu X,Shi S,Yang H,et al. The activation of N-methyl-D-aspartate receptors downregulates transient outward potassium and L-type calcium currents in rat models of depression[J]. Am J Physiol Cell Physiol,2017,313(2):C187-C196.

[19] Gilbert G,Demydenko K,Dries E,et al. Calcium signaling in cardiomyocyte function[J]. Cold Spring Harb Perspect Biol,2020,12(3):a035428.

[20] Modi JP,Shen W,Menzie-Suderam J,et al. The role of NMDA receptor partial antagonist,carbamathione,as a therapeutic agent for transient global ischemia[J]. Biomedicines,2023,11(7):1885.

[21] Liao W,Wen Y,Yang S,et al. Research progress and perspectives of N-methyl-D-aspartate receptor in myocardial and cerebral ischemia-reperfusion injury:a review[J].Medicine (Baltimore),2023,102(42):e35490.

[22] Govoruskina N,Jakovljevic V,Zivkovic V,et al. The role of cardiac N-methyl-D-aspartate receptors in heart conditioning—Effects on heart function and oxidative stress[J]. Biomolecules,2020,10(7):1065.

[23] Jannesar K,Abbaszadeh S,Malekinejad H,et al. Cardioprotective effects of memantine in myocardial ischemia:ex vivo and in vivo studies[J]. Eur J Pharmacol,2020,882:173277.

[24] Nesterov SV,Skorobogatova YA,Panteleeva AA,et al. NMDA and GABA receptor presence in rat heart mitochondria[J]. Chem Biol Interact,2018,291:40-46.

[25] Liu ZY,Hu S,Zhong QW,et al. N-methyl-D-aspartate receptor (NMDAR)-driven calcium influx potentiates the adverse effects of myocardial ischemia-reperfusion injury ex vivo[J]. J Cardiovasc Pharmacol,2017:329-338.

[26] Wang Y,He L,Du D,et al. A metabolomics-based study on NMDAR-mediated mitochondrial damage through calcium overload and ROS accumulation in myocardial infarction[J]. Front Biosci(Landmark Ed),2023,28(7):140.

[27] Gospodarczyk A,Marczewski K,Gospodarczyk N,et al. Homocysteine and cardiovascular disease—A current review[J]. Wiad Lek,2022,75(11 pt 2):2862-2866.

[28] Cheng H,Cheng Q,Bao X,et al. Over-activation of NMDA receptors promotes ABCA1 degradation and foam cell formation[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2020,1865(10):158778.

[29] Liu ZY,Zhong QW,Tian CN,et al. NMDA receptor-driven calcium influx promotes ischemic human cardiomyocyte apoptosis through a p38 MAPK-mediated mechanism[J]. J Cell Biochem,2019,120(4):4872-4882.

[30] Dumas SJ,Bru-Mercier G,Courboulin A,et al. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension[J]. Circulation,2018,137(22):2371-2389.

[31] Seagard JL,Dean C,Hopp FA. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs[J]. J Physio,1999,520(Pt 1):243-253.

[32] Xie D,Xiong K,Su X,et al. Identification of an endogenous glutamatergic transmitter system controlling excitability and conductivity of atrial cardiomyocytes[J]. Cell Res,2021,31(9):951-964.

[33] Melo HM,de Carvalho CR,Hoeller AA,et al. AMPAR GluA1 phosphorylation at serine 845 in limbic system is associated with cardiac autonomic tone[J]. Mol Neurobiol,2021,58(4):1859-1870.

[34] Gallo G,Rubattu S,Volpe M. Mitochondrial dysfunction in heart failure:from pathophysiological mechanisms to therapeutic opportunities[J]. Int J Mol Sci,2024,25(5):2667.

[35] Kawakita F,Nakano F,Kanamaru H,et al. Anti-apoptotic effects of AMPA receptor antagonist perampanel in early brain injury after subarachnoid hemorrhage in mice[J]. Transl Stroke Res,2024,15(2):462-475.

[36] Zou Y,Liu X,Hu Y,et al. Inhibition of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors ameliorates atrial inflammation and vulnerability to atrial fibrillation in rats with anxiety disorders[J]. J Cardiovasc Pharmacol,2024,84(2):227-238.

[37] Li Z,Yu Z,Cui S,et al. AMPA receptor inhibition alleviates inflammatory response and myocardial apoptosis after myocardial infarction by inhibiting TLR4/NF-κB signaling pathway[J]. Int Immunopharmacol,2024,133:112080.

[38] Morrell CN,Sun H,Ikeda M,et al. Glutamate mediates platelet activation through the AMPA receptor[J]. J Exp Med,2008,205(3):575-584.

[39] Liu Y,Zhou L,Xu H. F,et al. A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats[J]. Chin Med J (Engl),2013,126(7):1323-1332.

[40] Herrmann W,Herrmann M. The Controversial role of HCY and vitamin B deficiency in cardiovascular diseases[J]. Nutrients,2022,14(7):1412.

[41] Rastegarmanesh A,Rostami B,Nasimi A,et al. In the parvocellular part of paraventricular nucleus,glutamatergic and GABAergic neurons mediate cardiovascular responses to AngⅡ[J]. Synapse,2023,77(2):e22259.

[42] Zhou X,Yang H,Song X,et al. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension[J]. Hypertens Res,2019,42(8):1142-1151.

[43] Hao Y,Xiong R,Gong X. Memantine,NMDA receptor antagonist,attenuates ox-LDL-induced inflammation and oxidative stress via activation of BDNF/TrkB signaling pathway in HUVECs[J]. Inflammation,2021,44(2):659-670.

[44] Xie D,Xiong K,Su X,et al. Memantine targets glutamate receptors in atrial cardiomyocytes to prevent and treat atrial fibrillation[J]. Cell discovery,2022,8(1):76.

[45] Liu Y,Luo Z,Liao Z,et al. Effects of Excessive activation of N-methyl-D-aspartic acid receptors in neonatal cardiac mitochondrial dysfunction induced by intrauterine hypoxia[J]. Front Cardiovasc Med,2022,9:837142.

更新日期/Last Update: 2025-04-29