参考文献/References:
[1] Wells L,Hart GW. O-GlcNAcylation:a major nutrient/stress sensor that regulates cellular physiology[J]. J Biol Chem,2024:107635.
[2] Nelson ZM,Leonard GD,Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways[J]. J Biol Chem,2024,300(2):105615.
[3] Ma J,Wu C,Hart GW. Analytical and biochemical perspectives of protein O-GlcNAcylation[J]. Chem Rev,2021,121(3):1513-1581.
[4] Ou W,Liang Y,Qin Y,et al. Hypoxic acclimation improves cardiac redox homeostasis and protects heart against ischemia-reperfusion injury through upregulation of O-GlcNAcylation[J]. Redox Biol,2021,43:101994.
[5] Chatham JC,Patel RP. Protein glycosylation in cardiovascular health and disease[J]. Nature Reviews Cardiology,2024,21(8):525-544.
[6] Umapathi P,Mesubi OO,Banerjee PS,et al. Excessive O-GlcNAcylation causes heart failure and sudden death[J]. Circulation,2021,143(17):1687-1703.
[7] Qiu Z,Cui J,Huang Q,et al. Roles of O-GlcNAcylation in mitochondrial homeostasis and cardiovascular diseases[J]. Antioxidants,2024:13(5):571.
[8] Kadosaka T,Watanabe M,Natsui H,et al. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca2+ handling in ventricular cardiomyocytes[J]. Am J Physiol Heart Circ Physiol,2023,324(3):H341-H354.
[9] Okolo CA,Khaing EP,Mereacre V,et al. Direct regulation of the cardiac ryanodine receptor (RyR2) by O-GlcNAcylation[J]. Cardiovasc Diabetol,2023,22(1):276.
[10] Umapathi P,Aggarwal A,Zahra F,et al. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease[J]. J Biol Chem,2024,300(6):107296.
[11] Matsuno M,Yokoe S,Nagatsuka T,et al. O-GlcNAcylation-induced GSK-3β activation deteriorates pressure overload-induced heart failure via lack of compensatory cardiac hypertrophy in mice[J]. Front Endocrinol (Lausanne),2023,14:1122125.
[12] Prakoso D,Lim SY,Erickson JR,et al. Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart[J]. Cardiovasc Res,2022,118(1):212-225.
[13] Chen Y,Zhao X,Wu H. Metabolic stress and cardiovascular disease in diabetes mellitus:the role of protein O-GlcNAc modification[J]. Arterioscler Thromb Vasc Biol,2019,39(10):1911-1924.
[14] Lou S,Zhu W,Yu T,et al. Compound SJ-12 attenuates streptozocin-induced diabetic cardiomyopathy by stabilizing SERCA2a[J]. Biochim Biophys Acta Mol Basis Dis,2024,1870(5):167140.
[15] Cai L. Prevention or therapy of the diabetic cardiomyopathy by fine O-GlcNAcylation balance:hopes and concerns[J]. Cardiovasc Res,2022,118(1):7-9.
[16] Khanal S,Bhavnani N,Mathias A,et al. Deletion of smooth muscle O-GlcNAc transferase prevents development of atherosclerosis in western diet-fed hyperglycemic ApoE-/- mice in vivo[J]. Int J Mol Sci,2023,24(9):7899.
[17] Zhang W,Sun Y,Yang Y,et al. Impaired intracellular calcium homeostasis enhances protein O-GlcNAcylation and promotes vascular calcification and stiffness in diabetes[J]. Redox Biology,2023,63:102720.
[18] Masaki N,Feng B,Bretón-Romero R,et al. O-GlcNAcylation mediates glucose-induced alterations in endothelial cell phenotype in human diabetes mellitus[J]. J Am Heart Assoc,2020,9(12):e014046.
[19] Dattani A,Singh A,Mccann GP,et al. Myocardial calcium handling in type 2 diabetes:a novel therapeutic target[J]. J Cardiovasc Dev Dis,2024:11(1):12.
[20] Chatham JC,Young ME,Zhang J. Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications[J]. Curr Opin Pharmacol,2021,57:1-12.
[21] Jankauskas SS,Kansakar U,Varzideh F,et al. Heart failure in diabetes[J]. Metabolism,2021,125:154910.
[22] Hegyi B,Bers DM. New cardiac targets for empagliflozin:O-GlcNAcylation,CaMKⅡ,and calcium handling[J]. Am J Physiol Heart Circ Physiol,2023,324(3):H338-H340.
[23] Hegyi B,Fasoli A,Ko CY,et al. CaMKⅡ serine 280 O-GlcNAcylation links diabetic hyperglycemia to proarrhythmia[J]. Circ Res ,2021,129(1):98-113.
[24] Lu S,Liao Z,Lu X,et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKⅡ activation in mouse ventricular myocytes[J]. Circ Res,2020,126(10):e80-e96.
[25] Ng YH,Okolo CA,Erickson JR,et al. Protein O-GlcNAcylation in the heart[J]. Acta Physiol (Oxf),2021,233(1):e13696.
[26] Dozio E,Massaccesi L,Corsi Romanelli MM. Glycation and glycosylation in cardiovascular remodeling:focus on advanced glycation end products and O-linked glycosylations as glucose-related pathogenetic factors and disease markers[J]. J Clin Med,2021,10(20):4792.
[27] Levick SP,Widiapradja A. The diabetic cardiac fibroblast:mechanisms underlying phenotype and function[J]. Int J Mol Sci,2020,21(3):970.
[28] Chen X,Zhang L,He H,et al. Increased O-GlcNAcylation induces myocardial hypertrophy[J]. In Vitro Cell Dev Biol Anim,2020,56(9):735-743.
[29] Yeh CF,Cheng SH,Lin YS,et al. Targeting mechanosensitive endothelial TXNDC5 to stabilize eNOS and reduce atherosclerosis in vivo[J]. Sci Adv,2022,8(3):eabl8096.
[30] Cabrera JT,Si R,Tsuji-Hosokawa A,et al. Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice[J]. Diab Vasc Dis Res,2023,20(3):14791641231173630.
[31] Negre-Salvayre A,Swiader A,Guerby P,et al. Post-translational modifications of endothelial nitric oxide synthase induced by oxidative stress in vascular diseases[J]. Redox Experimental Medicine,2022,2022(1):R139-R148.
[32] Aulak KS,Barnes JW,Tian L,et al. Specific O-GlcNAc modification at Ser-615 modulates eNOS function[J]. Redox Biology,2020,36:101625.
[33] Costa TJ,Wilson EW,Fontes MT,et al. The O-GlcNAc dichotomy:when does adaptation become pathological?[J]. Clin Sci (Lond),2023,137(22):1683-1697.
[34] Lo WY,Yang WK,Peng CT,et al. MicroRNA-200a/200b modulate high glucose-induced endothelial inflammation by targeting O-linked N-acetylglucosamine transferase expression[J]. Front Physiol,2018,9:355.
[35] Muthusamy S,Demartino AM,Watson LJ,et al. MicroRNA-539 is up-regulated in failing heart,and suppresses O-GlcNAcase expression[J]. J Biol Chem,2014,289(43):29665-29676.
[36] Tian T,Leng Y,Tang B,et al. The oncogenic role and regulatory mechanism of PGK1 in human non-small cell lung cancer[J]. Biology Direct,2024,19(1):1.
[37] Lee S. Cardiovascular disease and miRNAs:possible oxidative stress-regulating roles of miRNAs[J]. Antioxidants,2024:13(6):656.