[1]李骁 许丹焰.心脏微管在心力衰竭中扮演的角色——治疗心力衰竭的新靶点?[J].心血管病学进展,2024,(12):1057.[doi:10.16806/j.cnki.issn.1004-3934.2024.12.001]
 LI Xiao,XU Danyan.Cardiac Microtubules in Heart Failure:New Therapeutic Targets?[J].Advances in Cardiovascular Diseases,2024,(12):1057.[doi:10.16806/j.cnki.issn.1004-3934.2024.12.001]
点击复制

心脏微管在心力衰竭中扮演的角色——治疗心力衰竭的新靶点?()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年12期
页码:
1057
栏目:
综述
出版日期:
2024-12-25

文章信息/Info

Title:
Cardiac Microtubules in Heart Failure:New Therapeutic Targets?
作者:
李骁 许丹焰
(中南大学湘雅二医院心血管内科,湖南 长沙 410011)
Author(s):
LI XiaoXU Danyan
(Department of Internal Cardiovascular Medicine,Second Xiangya Hospital,Central South University,Changsha 410011,Hunan,China)
关键词:
心脏微管翻译后修饰去酪氨酸化心力衰竭
Keywords:
Cardiac microtubulePost-translational modificationDetyrosinationHeart failure
DOI:
10.16806/j.cnki.issn.1004-3934.2024.12.001
摘要:
微管是细胞骨架的一种,由微管蛋白原丝组成的不分支的中空管状结构。细胞内微管呈网状或束状分布,参与维持细胞形态、细胞极性、细胞运动、细胞分裂以及细胞内信号转导等。心力衰竭是目前心血管领域治疗的主要难题。近年来发现心脏微管参与了心力衰竭的发展进程。笔者通过文献检索回顾了微管的结构和功能、微管在心力衰竭进程中的作用及其相关机制并进行总结,旨在寻找治疗心力衰竭的新靶点。在心力衰竭的心肌细胞中,可发现微管密度与稳定性的增加,其机制可能与翻译后修饰的微管蛋白浓度增加有关,其中最主要的为去酪氨酸化的微管蛋白。抑制去酪氨酸化的微管蛋白表达可明显改善心肌收缩功能。心脏微管参与了心力衰竭的发展进程,心脏微管有望成为治疗心力衰竭的一个新靶点。
Abstract:
Microtubules are unbranched hollow tubular structures in the cytoskeleton composed of tubulin filaments. Microtubules are distributed in a network and are involved in maintaining cell morphology,polarity,motility and division and intracellular signal transduction. Heart failure is a major cardiovascular problem for which therapy is challenging. Cardiac microtubules have recently been found to be involved in the development of heart failure. Here,we review the structure and function of microtubules,their role in heart failure and related mechanisms to aid in the discovery of new targets for heart failure treatment. Increased microtubule density and stability are observed in heart failure cardiomyocytes,and the mechanism may be related to the increased concentration of posttranslationally modified tubulin,of which detyrosinated tubulin is the most dominant. Inhibition of detyrosinated tubulin expression significantly improves myocardial systolic or diastolic performance by increasing relaxation kinetics and reducing myocardial and cardiomyocyte stiffness. In conclusion,cardiac microtubules are involved in heart failure development and may therefore be new targets for heart failure treatment

参考文献/References:

[1] Truby LK,Rogers JG. Advanced heart failure:epidemiology,diagnosis,and therapeutic approaches[J]. JACC Heart Fail,2020,8(7):523-536.

[2] McMurray JJV,Solomon SD,Inzucchi SE,et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med,2019,381(21):1995-2008.

[3] Neal B,Perkovic V,Mahaffey KW,et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(7):644-657.

[4] Solomon SD,McMurray JJV,Anand IS,et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction[J]. N Engl J Med,2019,381(17):1609-1620.

[5] McMurray JJ,Packer M,Desai AS,et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure[J]. N Engl J Med,2014,371(11):993-1004.

[6] Ludue?a RF. A hypothesis on the origin and evolution of tubulin[J]. Int Rev Cell Mol Biol,2013,302:41-185.

[7] Goodson HV,Jonasson EM. Microtubules and microtubule-associated proteins[J]. Cold Spring Harb Perspect Biol,2018,10(6):a022608.

[8] Desai A,Mitchison TJ. Microtubule polymerization dynamics[J]. Annu Rev Cell Dev Biol,1997,13:83-117.

[9] Janke C,Magiera MM. The tubulin code and its role in controlling microtubule properties and functions[J]. Nat Rev Mol Cell Biol,2020,21(6):307-326.

[10] Zile MR,Green GR,Schuyler GT,et al. Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy[J]. J Am Coll Cardiol,2001,37(4):1080-1084.

[11] Chen CY,Caporizzo MA,Bedi K,et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure[J]. Nat Med,2018,24(8):1225-1233.

[12] Wang X,Li F,Campbell SE,et al. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs:Ⅱ. Cytoskeletal remodeling[J]. J Mol Cell Cardiol,1999,31(2):319-331.

[13] Ishibashi Y,Takahashi M,Isomatsu Y,et al. Role of microtubules versus myosin heavy chain isoforms in contractile dysfunction of hypertrophied murine cardiocytes[J]. Am J Physiol Heart Circ Physiol,2003,285(3):H1270-H1285.

[14] Yuan Q,Zhan L,Zhou QY,et al. SIRT2 regulates microtubule stabilization in diabetic cardiomyopathy[J]. Eur J Pharmacol,2015,764:554-561.

[15] Ng DC,Ng IH,Yeap YY,et al. Opposing actions of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) in regulating microtubule stabilization during cardiac hypertrophy[J]. J Biol Chem,2011,286(2):1576-1587.

[16] Cheng G,Zile MR,Takahashi M,et al. A direct test of the hypothesis that increased microtubule network density contributes to contractile dysfunction of the hypertrophied heart[J]. Am J Physiol Heart Circ Physiol,2008,294(5):H2231-H2241.

[17] Fassett JT,Xu X,Hu X,et al. Adenosine regulation of microtubule dynamics in cardiac hypertrophy[J]. Am J Physiol Heart Circ Physiol,2009,297(2):H523-H532.

[18] Zhang C,Chen B,Guo A,et al. Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte transverse-tubule remodeling and Ca2+ handling dysfunction in heart failure[J]. Circulation ,2014,129(17):1742-1750.

[19] Fassett J,Xu X,Kwak D,et al. Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction[J]. J Mol Cell Cardiol,2019,130:49-58.

[20] Xiao J,Zhao H,Liang D,et al. Taxol,a microtubule stabilizer,improves cardiac contractile function during ischemia in vitro[J]. Pharmacology,2010,85(5):301-310.

[21] Xiao J,Liang D,Liu Y,et al. Taxol,a microtubule stabilizer,improves cardiac functional recovery during postischemic reperfusion in rat in vitro[J]. Cardiovasc Ther,2012,30(1):12-30.

[22] Perez EA. Paclitaxel and cardiotoxicity[J]. J Clin Oncol,1998,16(11):3481-3482.

[23] Belmadani S,Poüs C,Fischmeister R,et al. Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes[J]. Mol Cell Biochem,2004,258(1-2):35-48.

[24] Schuldt M,Pei J,Harakalova M,et al. Proteomic and functional studies reveal detyrosinated tubulin as treatment target in sarcomere mutation-induced hypertrophic cardiomyopathy[J]. Circ Heart Fail,2021,14(1):e007022.

[25] Robison P,Caporizzo MA,Ahmadzadeh H,et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes[J]. Science,2016,352(6284):aaf0659.

[26] Nieuwenhuis J,Brummelkamp TR. The tubulin detyrosination cycle:function and enzymes[J]. Trends Cell Biol,2019,29(1):80-92.

[27] Nieuwenhuis J,Adamopoulos A,Bleijerveld OB,et al. Vasohibins encode tubulin detyrosinating activity[J]. Science,2017,358(6369):1453-1456.

[28] Aillaud C,Bosc C,Peris L,et al. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation[J]. Science,2017,358(6369):1448-1453.

[29] Wang N,Bosc C,Ryul Choi S,et al. Structural basis of tubulin detyrosination by the vasohibin—SVBP enzyme complex[J]. Nat Struct Mol Biol,2019,26(7):571-582.

[30] Li F,Hu Y,Qi S,et al. Structural basis of tubulin detyrosination by vasohibins[J]. Nat Struct Mol Biol,2019,26(7):583-591.

[31] Iqbal Z,Tawamie H,Ba W,et al. Loss of function of SVBP leads to autosomal recessive intellectual disability,microcephaly,ataxia,and hypotonia[J]. Genet Med,2019,21(8):1790-1796.

[32] Chen CY,Salomon AK,Caporizzo MA,et al. Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes[J]. Circ Res,2020,127(2):e14-e27.

[33] Tian J,Shan XL,Wang SN,et al. Trans-cinnamaldehyde suppresses microtubule detyrosination and alleviates cardiac hypertrophy[J]. Eur J Pharmacol,2022,914:174687.

[34] Rankin JS,Arentzen CE,McHale PA,et al. Viscoelastic properties of the diastolic left ventricle in the conscious dog[J]. Circ Res,1977,41(1):37-45.

[35] Hess OM,Grimm J,Krayenbuehl HP. Diastolic simple elastic and viscoelastic properties of the left ventricle in man[J]. Circulation,1979,59(6):1178-1187.

[36] Fraites TJ Jr,Saeki A,Kass DA. Effect of altering filling pattern on diastolic pressure-volume curve[J]. Circulation,1997,96(12):4408-4414.

[37] Caporizzo MA,Chen CY,Bedi K,et al. Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium[J]. Circulation,2020,141(11):902-915.

[38] Doerflinger H,Benton R,Shulman JM,et al. The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium[J]. Development,2003,130(17):3965-3975.

[39] Goldstein B,Macara IG. The PAR proteins:fundamental players in animal cell polarization[J]. Dev Cell,2007,13(5):609-622.

[40] Trinczek B,Brajenovic M,Ebneth A,et al. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes[J]. J Biol Chem,2004,279(7):5915-5923.

[41] Yu X,Chen X,Amrute-Nayak M,et al. MARK4 controls ischaemic heart failure through microtubule detyrosination[J]. Nature,2021,594(7864):560-565.

更新日期/Last Update: 2025-01-08