[1]宋琳琳 孙雪 刘越 刘文秀.沉默信息调节因子1在心肌梗死中的研究进展[J].心血管病学进展,2024,(11):984.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.006]
 SONG LinlinSUN XueLIU YueLIU Wenxiu.Research Progress of Silence Information Regulator 1 in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2024,(11):984.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.006]
点击复制

沉默信息调节因子1在心肌梗死中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年11期
页码:
984
栏目:
综述
出版日期:
2024-11-25

文章信息/Info

Title:
Research Progress of Silence Information Regulator 1 in Myocardial Infarction
作者:
宋琳琳 孙雪 刘越 刘文秀
(哈尔滨医科大学附属第一医院心内科,黑龙江 哈尔滨 150001)
Author(s):
SONG LinlinSUN XueLIU YueLIU Wenxiu
(Department of Cardiology,The First Affiliated Hospital of Harbin Medical University,Harbin 150001 ,Heilongjiang,China)
关键词:
沉默信息调节因子1心肌梗死基因多态性防治靶点
Keywords:
Silence information regulator 1Myocardial infarctionGene polymorphismPrevention and control targets
DOI:
10.16806/j.cnki.issn.1004-3934.2024.11.006
摘要:
沉默信息调节因子1(SIRT1)是一种尼克酰胺腺嘌呤二核苷酸依赖的组蛋白脱乙酰酶,其可通过抑制氧化应激、炎症、细胞凋亡和纤维化发挥保护作用。大量研究证实,SIRT1与心肌梗死的发生和发展密切相关,SIRT1基因多态性是心肌梗死的易感因素之一。现综述SIRT1基因多态性及表达与心肌梗死的关系,同时总结目前以SIRT1为治疗靶点的研究,旨在为以SIRT1作为靶点的心肌梗死防治策略提供理论依据。
Abstract:
Silence information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent histone deacetylase that that exerts protective effects by inhibiting oxidative stress,inflammation,cell apoptosis and fibrosis. Numerous studies have confirmed that SIRT1 is closely related to the occurrence and development of myocardial infarction,and SIRT1 gene polymorphism is one of the susceptible factors for myocardial infarction. This article reviews the relationship between SIRT1 gene polymorphism and expression and myocardial infarction, as well as the current research on SIRT1 as a therapeutic target,aiming to provide theoretical basis for the prevention and treatment strategies of myocardial infarction targeting SIRT1

参考文献/References:

[1] Jiao F,Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases[J]. Oxid Med Cell Longev,2020,2020:6782872.

[2] Yang Y,Liu Y,Wang Y,et al. Regulation of SIRT1 and its roles in inflammation[J]. Front Immunol,2022,13:831168.

[3] Lu C,Jiang B,Xu J,et al. Neferine protected cardiomyocytes against hypoxia/oxygenation injury through SIRT1/Nrf2/HO‐1 signaling[J]. J Biochem Mol Toxicol,2023,37(8):e23398.

[4] Cheng J,Cho M,Cen JM,et al. A TagSNP in SIRT1 gene confers susceptibility to myocardial infarction in a Chinese Han population[J]. PLoS One,2015,10(2) :e0115339.

[5] Hu Y,Wang L,Chen S,et al. Association between the SIRT1 mRNA expression and acute coronary syndrome[J]. J Atheroscler Thromb,2015,22(2):165-182.

[6] Cui Y,Wang H,Chen H,et al. Genetic analysis of the SIRT1 gene promoter in myocardial infarction[J]. Biochem Biophys Res Commun,2012,426(2):232-236.

[7] Dardano A,Lucchesi D,Garofolo M,et al. SIRT1 rs7896005 polymorphism affects major vascular outcomes,not all-cause mortality,in Caucasians with type 2 diabetes:a 13-year observational study[J]. Diabetes Metab Res Rev,2022,38(4):e3523.

[8] Wang L,Yu F. SCD leads to the development and progression of acute myocardial infarction through the AMPK signaling pathway[J]. BMC Cardiovasc Disord,2021,21(1):197.

[9] Hsu CP,Zhai P,Yamamoto T,et al. Silent information regulator 1 protects the heart from ischemia/reperfusion[J]. Circulation,2010,122(21):2170-2182.

[10] Ma B,Guo B,Chen Z,et al. SIRT1 regulates hypoxia-induced oxidative stress in cardiomyocytes via PI3K/MTOR signaling[J]. Cell Mol Biol(Noisy-le-grand),2022,68(2):48-53.

[11] Xu JJ,Cui J,Lin Q,et al. Protection of the enhanced Nrf2 deacetylation and its downstream transcriptional activity by SIRT1 in myocardial ischemia/reperfusion injury[J]. Int J Cardiol,2021,342:82-93.

[12] Doulamis IP,Tzani AI,Konstantopoulos PS,et al. A sirtuin 1/MMP2 prognostic index for myocardial infarction in patients with advanced coronary artery disease[J]. Int J Cardiol,2017,230:447-453.

[13] Wang Y,Hu HF,Liu HL,et al. Using ultrasound three-dimensional speckle tracking technology to explore the role of SIRT1 in ventricular remodeling after myocardial infarction[J]. Eur Rev Med Pharmacol Sci,2020,24(20):10632-10645.

[14] D’Onofrio N,Sardu C,Paolisso P,et al. MicroRNA-33 and SIRT1 influence the coronary thrombus burden in hyperglycemic STEMI patients[J]. J Cell Physiol,2020,235(2):1438-1452.

[15] Chen C,Zheng M,Wang W,et al. Elevated circulating inflammatory biomarker levels in the SIRT1-NF-κB-sCD40L pathway in patients with acute myocardial infarction:a case-control study[J]. Ann Med,2023,55(2):2284366.

[16] Yamac AH,Uysal O,Ismailoglu Z,et al. Premature myocardial infarction:genetic variations in SIRT1 affect disease susceptibility[J]. Cardiol Res Pract,2019,2019:8921806.

[17] Li H,Zheng F,Zhang Y,et al. Resveratrol,novel application by preconditioning to attenuate myocardial ischemia/reperfusion injury in mice through regulate AMPK pathway and autophagy level[J]. J Cell Mol Med,2022,26(15):4216-4229.

[18] Liu P,Li J,Liu M,et al. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress,inflammation,and apoptosis[J]. Biomed Pharmacother,2021,139:111552.

[19] Tian L,Cao W,Yue R,et al. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway[J]. J Pharmacol Sci,2019,139(4):352-360.

[20] Zhao D,Liu K,Wang J,et al. Sy ringin exerts anti-inflammatory and antioxidant effects by regulating SIRT1 signaling in rat and cell models of acute myocardial infarction[J]. Immun Inflamm Dis,2023,11(2):e775.

[21] Wang K,Hu W. Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway[J]. Acta Biochim Pol,2020,67(2):239-245.

[22] Zhu X,Wu Y,Zhang X,et al. Stachydrine ameliorates hypoxia reoxygenation injury of cardiomyocyte via enhancing SIRT1-Nrf2 pathway[J]. J Cardiothorac Surg,2023,18(1):265.

[23] Tu C,Wan B,Zeng Y. Ginsenoside Rg3 alleviates inflammation in a rat model of myocardial infarction via the SIRT1/NF-κB pathway[J]. Exp Ther Med,2020,20(6):238.

[24] Guan S,Xin Y,Ding Y,et al. Ginsenoside Rg1 protects against cardiac remodeling in heart failure via SIRT1/PINK1/Parkin-mediated mitophagy [J]. Chem Biodivers, 2023 ,20(2):e202200730.

[25] Yama? AH,K?l?? ?. Effect of statins on sirtuin 1 and endothelial nitric oxide synthase expression in young patients with a history of premature myocardial infarction[J]. Turk Kardiyol Dern Ars,2018,46(3):205-215.

[26] Sun X,Han Y,Dong C,et al. Daming capsule protects against myocardial infarction by promoting mitophagy via the SIRT1/AMPK signaling pathway[J]. Biomed Pharmacother,2022,151:113162.

[27] Luo XY,Zhong Z,Chong AG,et al. Function and mechanism of trimetazidine in myocardial infarction-induced myocardial energy metabolism disorder through the SIRT1-AMPK pathway[J]. Front Physiol,2021,12:645041.

[28] Bao M,Huang W,Zhao Y,et al. Verapamil alleviates myocardial ischemia/reperfusion injury by attenuating oxidative stress via sctivation of SIRT1[J]. Front Pharmacol,2022,13:822640.

[29] Tan Y,Bie YL,Chen L,et al. Lingbao Huxin pill alleviates apoptosis and inflammation at infarct border zone through SIRT1-mediated FOXO1 and NF-κB pathways in rat model of acute myocardial infarction[J]. Chin J Integr Med,2022,28(4):330-338.

[30] Duan J,Lin J,Zhang N,et al. Effect of Xuefu Zhuyu Capsule on myocardial infarction:network pharmacology and experimental verification[J]. Evid Based Complement Alternat Med,2023,2023:5652276.

[31] Asensio-Lopez MC,Sassi Y,Soler F,et al. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI[J]. Sci Rep,2021,11(1):3915.

[32] Dong FF,Dong SH,Liang Y,et al. MiR-34a promotes myocardial infarction in rats by inhibiting the activity of SIRT1[J]. Eur Rev Med Pharmacol Sci,2019,23(16):7059-7065.

[33] Wang LZ,Xi JN,Liu TJ,et al. MiR-204 reduces apoptosis in rats with myocardial infarction by targeting SIRT1/p53 signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(23):12306-12314.

[34] Ning S,Li Z,Ji Z,et al. MicroRNA-494 suppresses hypoxia/reoxygenation-induced cardiomyocyte apoptosis and autophagy via the PI3K/AKT/mTOR signaling pathway by targeting SIRT1[J]. Mol Med Rep,2020,22(6):5231-5242.

[35] Wei YJ,Wang JF,Cheng F,et al. miR-124-3p targeted SIRT1 to regulate cell apoptosis,inflammatory response,and oxidative stress in acute myocardial infarction in rats via modulation of the FGF21/CREB/PGC1α pathway[J]. J Physiol Biochem,2021,77(4):577-587.

[36] Zhou Y,Li KS,Liu L,et al. MicroRNA-132 promotes oxidative stress-induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia-reperfusion injury[J]. Int J Mol Med,2020,45(6):1942-1950.

[37] Niu X,Pu S,Ling C,et al. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway[J]. Cell Prolif,2020,53(6):e12818.

[38] Zhang JY,Yang Z,Fang K,et al. Long noncoding RNA ILF3-AS1 regulates myocardial infarction via the miR-212-3p/SIRT1 axis and PI3K/Akt signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(5):2647-2658.

[39] Shu L,Zhang W,Huang C,et al. lncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis[J]. J Cell Physiol,2020,235(2):1175-1183.

[40] Xie J. Long noncoding RNA XIST regulates myocardial infarction via miR-486-5p/SIRT1 axis[J]. Appl Biochem Biotechnol,2023,195(2):725-734.

[41] Mao Q,Liang XL,Zhang CL,et al. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis[J]. Stem Cell Res Ther,2019,10(1):393.

[42] Jia D,Hou L,Lv Y,et al. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling[J]. J Cell Physiol,2019,234(12):23705-23718.

[43] Najafipour H,Rostamzadeh F,Yeganeh-Hajahmadi M,et al. Improvement of cardiac function in rats with myocardial infarction by low-intensity to moderate-intensity endurance exercise is associated with normalization of Klotho and SIRT1[J]. J Cardiovasc Pharmacol,2021,77(1):79-86.

[44] Guo Z,Wang M,Ying X,et al. Caloric restriction increases the resistance of aged heart to myocardial ischemia/reperfusion injury via modulating AMPK-SIRT1-PGC1a energy metabolism pathway[J]. Sci Rep,2023,13(1):2045.

[45] Han D,Huang W,Li X,et al. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway[J]. J Pineal Res,2016,60(2):178-192.

[46] Naaz S,Mishra S,Pal PK,et al. Activation of SIRT1/PGC1α/SIRT3 pathway by melatonin provides protection against mitochondrial dysfunction in isoproterenol induced myocardial injury[J]. Heliyon,2020,6(10):e05159.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(11):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(11):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(11):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(11):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(11):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(11):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

更新日期/Last Update: 2024-12-02