参考文献/References:
[1] Jamali HK,Waqar F,Gerson MC. Cardiac autonomic innervation[J]. J Nucl Cardiol,2017,24(5):1558-1570.
[2] Zelt JGE,deKemp?RA,Rotstein?BH,et al. Nuclear imaging of the cardiac sympathetic nervous system:a disease—Specific interpretation in heart failure[J]. JACC Cardiovasc Imaging,2020,13(4):1036-1054.
[3] Florea VG,Cohn JN. The autonomic nervous system and heart failure[J]. Cire Res,2014,114(11):1815-1826.
[4] Kenney MJ,GantaCK. Autonomic nervous system and immune system interactions[J]. Compr Physiol,2014,4(3):1177-1200.
[5]van der Bijl P,Knuuti J,Delgado V,et al. Cardiac sympathetic innervation imaging with PET radiotracers[J]. Curr Cardiol Rep,2020,23(1):4.
[6] Farber G,Boczar KE,Wiefels CC,et al. The future of cardiac molecular imaging[J]. Semin Nucl Med,2020,50(4):367-385.
[7] Boutagy NE,Sinusas AJ. Recent advances and clinical applications of PET cardiac autonomic nervous system imaging[J]. Curr Cardiol Rep,2017,19(4):33.
[8] Triposkiadis F,Karayannis G,Giamouzis G,et al. The sympathetic nervous system in heart failure[J]. J Am Coll Cardiol,2009,54(19):1747-1762.
[9] Schroeder C,Jordan J. Norepinephrine uptake mechanisms in cardiovascular disease deserve our attention[J]. J Cardiovasc Pharmacol,2011,58(4):406-408.
[10] Raffel DM,Wieland DM. Assessment of cardiac sympathetic nerve integrity with positron emission tomography[J]. Nucl Med Bio1,2001,28(5):541-559.
[11] Simula S,Vanninen E,Viitanen L,et al. Cardiac adrenergic innervation is affected in asymptomatic subjects with very early stage of coronary artery disease[J]. J Nucl Med,2002,43(1):1-7.
[12] Luisi AJ,Suzuki G,Haka MS,et al. Regional 11C-hydroxyephedrine retention in hibernating
[13] myocardium:chronic inhomogeneity of sympathetic innervation in the absence of infarction[J]. J Nucl Med,2005,46(8):1368-1374.
[14] Gutterman DD,Morgan DA,Miller FJ. Effect of brief myocardial ischemia on sympathetic coronary vasoconstriction[J]. Circ Res,1992,71(4):960-969.
[15] Fernandez SF,Ovchinnikov V,Canty JM,et al. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting[J]. Am J Physiol Heart Circ Physiol,2013,304(2):H318-H327.
[16] Li HT,Long CS,Rokosh DG,et al. Chronic hypoxia differentially regulates alpha 1-adrenergic receptor subtype mRNAs and inhibits alpha 1-adrenergic receptor-stimulated cardiac hypertrophy and signaling[J]. Circulation,1995,92(4):918-925.
[17] Kawai H,Mohan A,Hagen J,et al. Alterations in cardiac adrenergic terminal function and beta-adrenoceptor density in pacinginduced heart failure[J]. Am J Physiol Heart Circ Physiol,2000,278(5):H1708-H1716.
[18] Yang L,Yin L,Hu M,et al. Preliminary Evaluation of F-labeled benzylguanidine analogs as NET tracers for myocardial infarction diagnosis[J]. Mol Imaging Biol,2023,25(6):1125-1134.
[19] Molitor M,Rudi WS,Garlapati V,et al. Nox2+ myeloid cells drive vascular infammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensinⅡreceptor type 1[J]. Cardiovasc Res,2021,117(1):162-177.
[20] Snipelisky D,Chaudhry SP,Stewart GC. The many faces of heart failure[J]. Card Electrophysiol Clin,2019,11(1):11-20.
[21] Minatoguchi S. Heart failure and its treatment from the perspective of sympathetic nerve activity[J]. J Cardiol,2022,79(6):691-697.
[22] Ramchandra R,Hood SG,Xing D,et al. Mechanisms underlying the increased cardiac norepinephrine spillover in heart failure[J]. Am J Physiol Heart Circ Physiol,2018,315(2):H340-H347.
[23] Floras JS. The 2021 Carl Ludwig Lecture. Unsympathetic autonomic regulation in heart failure:patient-inspired insights[J]. Am J Physiol Regul Integr Comp Physiol,2021,321(3):R338- R351.
[24] Gupta S,Amanullah A. Radionuclide imaging of cardiac sympathetic innervation in heart failure:unlocking untapped potential[J]. Heart Fail Rev,2015,20(2):215-226.
[25] Wan N,Travin MI. Cardiac imaging with 123I-meta-iodobenzylguanidine and analogous PET tracers:current status and future perspectives[J]. Semin Nucl Med,2020,50(4):331-348.
[26] Nakajima K,Scholte AJHA,Nakata T,et al. Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine:perspectives from Japan and Europe[J]. J Nucl Cardiol,2017,24(3):952-960.
[27] Werner RA,Chen XY,Maya Y,et al. The impact of ageing on 11C-hydroxyephedrine uptake in the rat heart[J]. Sci Rep,2018,8(1):11120.
[28] Langer O,Halldin C. PET and SPET tracers for mapping the cardiac nervous system[J]. Eur J Nucl Med Mol Imaging,2002,29(3):416-434.
[29] Fallavollita JA,Heavey BM,Luisi AJ,et al. Regional myocardiaympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy[J]. J Am Coll Cardiol,2014,63(2):141-149.
[30] Raffel DM,Corbett JR,del Rosario RB,et al. Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart[J]. J Nucl Med,1999,40(2):232-238.
[31] Travin MI. Cardiac autonomic imaging with SPECT tracers[J]. J Nucl Cardiol,2013,20(1):128-143.
[32] Vallabhajosula S,NikolopoulouA. Radioiodinated metaiodoberzyl-guanidine (MIBG):radiochemistry,biology,and pharmacology[J]. Semin Nucl Med,2011,41(5):324-333.
[33] Jacobson AF,Senior R,Cerqueira MD,et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure[J]. J Am Coll Cardiol,2010,55(20):2212-2221.
[34] 何玉林张锦明.心脏交感神经正电子显像剂的研究进展[J].中华核医学与分子影像杂志,2017,37(4)237-239.
[35] Zhang H,Huang R,Pillarsetty N,et al. Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter[J]. Eur J Nucl Med Mol Imaging,2014,41(2):322-332.
[36] Zhang H,Huang R,Cheung NK,et al. Imaging the norepinephrine transporter in neuroblastoma:a comparison of [18F]-MFBG and 123I-MIBG[J]. Clin Cancer Res,2014,20(8):2182-2191.
[37] Grkovski M,Zanzonico PB,Modak S,et al. F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation[J].J Nucl Cardiol,2022,29(6):3179-3188.
[38] Garg,PK,Garg S,Zalutsky MR. Synthesis and preliminary evaluation of para- and meta-[18F]fluorobenzylguanidine[J]. Nucl Med Biol,1994,21(1):97-103.
[39]Pandit-Taskar N,Zanzonico P,Staton KD,et al. Biodistribution and dosimetry of 18F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies[J]. J Nucl Med,2018,59(1):147-153.
[40] Samim A,Blom T,Poot AJ,et al. [18F]mFBG PET-CT for detection and localisation of neuroblastoma:a prospective pilot study[J]. Eur J Nucl Med Mol Imaging,2023,50(4):1146-1157.
[41] 叶伟健,麻杰,董陈晨,等.去甲肾上腺素转运蛋白显像剂18F-mFBG的自动化合成及其用于嗜铬细胞瘤PET/CT显像的效果评估[J]. 中华核医学与分子影像杂志,2023,43(9):543-548.
[42] Turnock S,Turton DR,Martins CD,et al. 18F-meta-fluorobenzylguanidine (18F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models[J]. Sci Rep,2020,10(1):20918.
[43] Ismailani US,Buchler A,Farber G,et al. Cardiac sympathetic positron emission tomography imaging with meta-[18F] fluorobenzylguanidine is sensitive to uptake-1 in rats[J]. ACS Chem Neurosci,2021,12(22):4350-4360.
[44] Zelt JGE,Britt D,Mair BA,et al. Regional distribution of fluorine-18- flubrobenguane and carbon-11-hydroxyephedrine for cardiac PET imaging of sympathetic innervation[J]. JACC Cardiovasc Imaging,2021,14(7):1425-1436.
[45] Chen X,Werner RA,Koshino K,et al. Molecular imagingderived biomarker of cardiac nerve integrity-introducing high NET afnity PET probe 18F-AF78[J]. Theranostics,2022,12(9):4446-4458.
[46] Werner RA,Chen X,Rowe SP,et al. Moving into the next era of PET myocardial perfusion imaging:introduction of novel 18F-labeled tracers[J]. Int J Cardiovasc Imaging,2019,35(3):569-577.