[1]汪娇 李剑明.18F-MFBG新型正电子心脏交感神经显像进展[J].心血管病学进展,2024,(9):802.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.008]
 WANG Jiao,LI Jianming.Update Research Progress of 18F-MFBG Novel Positron Cardiac Sympathetic Imaging Agent[J].Advances in Cardiovascular Diseases,2024,(9):802.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.008]
点击复制

18F-MFBG新型正电子心脏交感神经显像进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年9期
页码:
802
栏目:
综述
出版日期:
2024-09-25

文章信息/Info

Title:
Update Research Progress of 18F-MFBG Novel Positron Cardiac Sympathetic Imaging Agent
作者:
汪娇 李剑明
(泰达国际心血管病医院核医学科,天津 300457)
Author(s):
WANG JiaoLI Jianming
(Department of Nuclear Medicine,TEDA International Cardiovascular Hospital,Tianjin 300457,China)
关键词:
氟放射性同位素放射性示踪剂正电子发射心脏交感神经系统
Keywords:
Fluorine radioisotopesRadioactive tracerPositron emission tomographyHeartSympathetic nervous system
DOI:
10.16806/j.cnki.issn.1004-3934.2024.09.008
摘要:
自主神经系统在调节心血管功能方面起着非常重要的作用,完整的神经支配是心血管功能正常的基础。心脏神经系统的改变通常出现在临床症状之前心脏交感神经显像可直观显示心脏交感神经的完整性和功能状态,是评价心脏交感神经功能的灵敏指标,能够灵敏地反映心脏自主神经功能的完整性、神经元的分泌功能及活性,对心脏疾病的早期诊断和及时干预有重要的临床价值。近年来18F-meta-luorobenzylguanidine(18F-MFBG)新型正电子心脏交感神经显像剂发展迅速,具有潜在的良好应用前景,综述该显像剂相关研究的最新进展。
Abstract:
The autonomic nervous system plays a vital role in regulating cardiovascular function,complete innervation is the basis of normal cardiovascular function.?Changes in the cardiac nervous system usually occur before clinical symptoms. Cardiac sympathetic imaging can directly display the integrity and functional status of the cardiac sympathetic nerve and is a sensitive index to evaluate cardiac sympathetic nerve function. It can sensitively reflect the integrity of cardiac autonomic nerve function and the secretory function and activity of neurons.?It has significant clinical value for early diagnosis and timely heart disease intervention.?In recent years,18F-meta-fluorobenzylguanidine (18F-MFBG) novel positron cardiac sympathetic imaging agents have developed rapidly and have good potential application prospects. This article reviews the latest research progress on this agent

参考文献/References:

[1] Jamali HK,Waqar F,Gerson MC. Cardiac autonomic innervation[J]. J Nucl Cardiol,2017,24(5):1558-1570.
[2] Zelt JGE,deKemp?RA,Rotstein?BH,et al. Nuclear imaging of the cardiac sympathetic nervous system:a disease—Specific interpretation in heart failure[J]. JACC Cardiovasc Imaging,2020,13(4):1036-1054.
[3] Florea VG,Cohn JN. The autonomic nervous system and heart failure[J]. Cire Res,2014,114(11):1815-1826.
[4] Kenney MJ,GantaCK. Autonomic nervous system and immune system interactions[J]. Compr Physiol,2014,4(3):1177-1200.
[5]van der Bijl P,Knuuti J,Delgado V,et al. Cardiac sympathetic innervation imaging with PET radiotracers[J]. Curr Cardiol Rep,2020,23(1):4.
[6] Farber G,Boczar KE,Wiefels CC,et al. The future of cardiac molecular imaging[J]. Semin Nucl Med,2020,50(4):367-385.
[7] Boutagy NE,Sinusas AJ. Recent advances and clinical applications of PET cardiac autonomic nervous system imaging[J]. Curr Cardiol Rep,2017,19(4):33.
[8] Triposkiadis F,Karayannis G,Giamouzis G,et al. The sympathetic nervous system in heart failure[J]. J Am Coll Cardiol,2009,54(19):1747-1762.
[9] Schroeder C,Jordan J. Norepinephrine uptake mechanisms in cardiovascular disease deserve our attention[J]. J Cardiovasc Pharmacol,2011,58(4):406-408.
[10] Raffel DM,Wieland DM. Assessment of cardiac sympathetic nerve integrity with positron emission tomography[J]. Nucl Med Bio1,2001,28(5):541-559.
[11] Simula S,Vanninen E,Viitanen L,et al. Cardiac adrenergic innervation is affected in asymptomatic subjects with very early stage of coronary artery disease[J]. J Nucl Med,2002,43(1):1-7.
[12] Luisi AJ,Suzuki G,Haka MS,et al. Regional 11C-hydroxyephedrine retention in hibernating
[13] myocardium:chronic inhomogeneity of sympathetic innervation in the absence of infarction[J]. J Nucl Med,2005,46(8):1368-1374.
[14] Gutterman DD,Morgan DA,Miller FJ. Effect of brief myocardial ischemia on sympathetic coronary vasoconstriction[J]. Circ Res,1992,71(4):960-969.
[15] Fernandez SF,Ovchinnikov V,Canty JM,et al. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting[J]. Am J Physiol Heart Circ Physiol,2013,304(2):H318-H327.
[16] Li HT,Long CS,Rokosh DG,et al. Chronic hypoxia differentially regulates alpha 1-adrenergic receptor subtype mRNAs and inhibits alpha 1-adrenergic receptor-stimulated cardiac hypertrophy and signaling[J]. Circulation,1995,92(4):918-925.
[17] Kawai H,Mohan A,Hagen J,et al. Alterations in cardiac adrenergic terminal function and beta-adrenoceptor density in pacinginduced heart failure[J]. Am J Physiol Heart Circ Physiol,2000,278(5):H1708-H1716.
[18] Yang L,Yin L,Hu M,et al. Preliminary Evaluation of F-labeled benzylguanidine analogs as NET tracers for myocardial infarction diagnosis[J]. Mol Imaging Biol,2023,25(6):1125-1134.
[19] Molitor M,Rudi WS,Garlapati V,et al. Nox2+ myeloid cells drive vascular infammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensinⅡreceptor type 1[J]. Cardiovasc Res,2021,117(1):162-177.
[20] Snipelisky D,Chaudhry SP,Stewart GC. The many faces of heart failure[J]. Card Electrophysiol Clin,2019,11(1):11-20.
[21] Minatoguchi S. Heart failure and its treatment from the perspective of sympathetic nerve activity[J]. J Cardiol,2022,79(6):691-697.
[22] Ramchandra R,Hood SG,Xing D,et al. Mechanisms underlying the increased cardiac norepinephrine spillover in heart failure[J]. Am J Physiol Heart Circ Physiol,2018,315(2):H340-H347.
[23] Floras JS. The 2021 Carl Ludwig Lecture. Unsympathetic autonomic regulation in heart failure:patient-inspired insights[J]. Am J Physiol Regul Integr Comp Physiol,2021,321(3):R338- R351.
[24] Gupta S,Amanullah A. Radionuclide imaging of cardiac sympathetic innervation in heart failure:unlocking untapped potential[J]. Heart Fail Rev,2015,20(2):215-226.
[25] Wan N,Travin MI. Cardiac imaging with 123I-meta-iodobenzylguanidine and analogous PET tracers:current status and future perspectives[J]. Semin Nucl Med,2020,50(4):331-348.
[26] Nakajima K,Scholte AJHA,Nakata T,et al. Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine:perspectives from Japan and Europe[J]. J Nucl Cardiol,2017,24(3):952-960.
[27] Werner RA,Chen XY,Maya Y,et al. The impact of ageing on 11C-hydroxyephedrine uptake in the rat heart[J]. Sci Rep,2018,8(1):11120.
[28] Langer O,Halldin C. PET and SPET tracers for mapping the cardiac nervous system[J]. Eur J Nucl Med Mol Imaging,2002,29(3):416-434.
[29] Fallavollita JA,Heavey BM,Luisi AJ,et al. Regional myocardiaympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy[J]. J Am Coll Cardiol,2014,63(2):141-149.
[30] Raffel DM,Corbett JR,del Rosario RB,et al. Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart[J]. J Nucl Med,1999,40(2):232-238.
[31] Travin MI. Cardiac autonomic imaging with SPECT tracers[J]. J Nucl Cardiol,2013,20(1):128-143.
[32] Vallabhajosula S,NikolopoulouA. Radioiodinated metaiodoberzyl-guanidine (MIBG):radiochemistry,biology,and pharmacology[J]. Semin Nucl Med,2011,41(5):324-333.
[33] Jacobson AF,Senior R,Cerqueira MD,et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure[J]. J Am Coll Cardiol,2010,55(20):2212-2221.
[34] 何玉林张锦明.心脏交感神经正电子显像剂的研究进展[J].中华核医学与分子影像杂志,2017,37(4)237-239.
[35] Zhang H,Huang R,Pillarsetty N,et al. Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter[J]. Eur J Nucl Med Mol Imaging,2014,41(2):322-332.
[36] Zhang H,Huang R,Cheung NK,et al. Imaging the norepinephrine transporter in neuroblastoma:a comparison of [18F]-MFBG and 123I-MIBG[J]. Clin Cancer Res,2014,20(8):2182-2191.
[37] Grkovski M,Zanzonico PB,Modak S,et al. F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation[J].J Nucl Cardiol,2022,29(6):3179-3188.
[38] Garg,PK,Garg S,Zalutsky MR. Synthesis and preliminary evaluation of para- and meta-[18F]fluorobenzylguanidine[J]. Nucl Med Biol,1994,21(1):97-103.
[39]Pandit-Taskar N,Zanzonico P,Staton KD,et al. Biodistribution and dosimetry of 18F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies[J]. J Nucl Med,2018,59(1):147-153.
[40] Samim A,Blom T,Poot AJ,et al. [18F]mFBG PET-CT for detection and localisation of neuroblastoma:a prospective pilot study[J]. Eur J Nucl Med Mol Imaging,2023,50(4):1146-1157.
[41] 叶伟健,麻杰,董陈晨,等.去甲肾上腺素转运蛋白显像剂18F-mFBG的自动化合成及其用于嗜铬细胞瘤PET/CT显像的效果评估[J]. 中华核医学与分子影像杂志,2023,43(9):543-548.
[42] Turnock S,Turton DR,Martins CD,et al. 18F-meta-fluorobenzylguanidine (18F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models[J]. Sci Rep,2020,10(1):20918.
[43] Ismailani US,Buchler A,Farber G,et al. Cardiac sympathetic positron emission tomography imaging with meta-[18F] fluorobenzylguanidine is sensitive to uptake-1 in rats[J]. ACS Chem Neurosci,2021,12(22):4350-4360.
[44] Zelt JGE,Britt D,Mair BA,et al. Regional distribution of fluorine-18- flubrobenguane and carbon-11-hydroxyephedrine for cardiac PET imaging of sympathetic innervation[J]. JACC Cardiovasc Imaging,2021,14(7):1425-1436.
[45] Chen X,Werner RA,Koshino K,et al. Molecular imagingderived biomarker of cardiac nerve integrity-introducing high NET afnity PET probe 18F-AF78[J]. Theranostics,2022,12(9):4446-4458.
[46] Werner RA,Chen X,Rowe SP,et al. Moving into the next era of PET myocardial perfusion imaging:introduction of novel 18F-labeled tracers[J]. Int J Cardiovasc Imaging,2019,35(3):569-577.

更新日期/Last Update: 2024-10-16