参考文献/References:
[1] Roth GA,Mensah GA,Johnson CO,et al. Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 Study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[2] Dai J,Wang B,Zhang Z,et al. Injectable mesh-like conductive hydrogel patch for elimination of atrial fibrillation[J]. Adv Healthc Mater,2024,13(17):e2303219.
[3] Wu T,Cui C,Huang Y,et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction[J]. ACS Appl Mater Interfaces,2020,12(2):2039-2048.
[4] Zheng Z,Tan Y,Li Y,et al. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction[J]. J Control Release,2021,335:216-236.
[5] Qiu Y,Yu C,Yue Z,et al. Chronological-programmed black phosphorus hydrogel for responsive modulation of the pathological microenvironment in myocardial infarction[J]. ACS Appl Mater Interfaces,2024,16(14):17323-17338.
[6] Swirski FK,Nahrendorf M. Cardioimmunology:the immune system in cardiac homeostasis and disease[J]. Nat Rev Immunol,2018,18(12):733-744.
[7] Zhu S,Zhang W,Xu C,et al. An injectable polyacrylamide/chitosan-based hydrogel with highly adhesive,stretchable and electroconductive properties loaded with irbesartan for treatment of myocardial ischemia-reperfusion injury[J]. Int J Biol Macromol,2024,266(Pt 1):131175.
[8] Zhang F,Zhang Y,Qian S,et al. Injectable and conductive nanomicelle hydrogel with α-tocopherol encapsulation for enhanced myocardial infarction repair[J]. ACS Nano,2024,18(14):10216-10229.
[9] Zhang L,Bei Z,Li T,et al. An injectable conductive hydrogel with dual responsive release of rosmarinic acid improves cardiac function and promotes repair after myocardial infarction[J]. Bioact Mater,2023,29:132-150.
[10] Wei X,Chen S,Xie T,et al. An MMP-degradable and conductive hydrogel to stabilize HIF-1α for recovering cardiac functions[J]. Theranostics,2022,12(1):127-142.
[11] Varshosaz J,Masoudi S,Mehdikhani M,et al. Atorvastatin lipid nanocapsules and gold nanoparticles embedded in injectable thermo-gelling hydrogel scaffold containing adipose tissue extracellular matrix for myocardial tissue regeneration[J]. IET Nanobiotechnol,2019,13(9):933-941.
[12] Liang W,Chen J,Li L,et al. Conductive hydrogen sulfide-releasing hydrogel encapsulating ADSCs for myocardial infarction treatment[J]. ACS Appl Mater Interfaces,2019,11(16):14619-14629.
[13] Zhu S,Yu C,Liu N,et al. Injectable conductive gelatin methacrylate / oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment[J]. Bioactive Mater,2022,13:119-134.
[14] Shafei AE,Ali MA,Ghanem HG,et al. Mesenchymal stem cell therapy :a promising cell-based therapy for treatment of myocardial infar ction[J]. J Gene Med,2017,19(12):e2995.
[15] Yan C,Wang X,Wang Q,et al. A novel conductive polypyrrole-chitosan hydrogel containing human endometrial mesenchymal stem cell-derived exosomes facilitated sustained release for cardiac repair[J]. Adv Healthc Mater,2024,13(10):e2304207.
[16] Yu C,Yue Z,Shi M,et al. An intrapericardial injectable hydrogel patch for mechanical-electrical coupling with infarcted myocardium[J]. ACS Nano,2022,16(10):16234-16248.
[17] Chen X,Zhu L,Wang X,et al. Insight into heart-tailored architectures of hydrogel to restore cardiac functions after myocardial infarction[J]. Mol Pharm,2023,20(1):57-81.
[18] Wang W,Tan B,Chen J,et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials,2018,160:69-81.
[19] Shilo M,Baruch ES,Wertheim L,et al. Imageable AuNP-ECM hydrogel tissue implants for regenerative medicine[J]. Pharmaceutics,2023,15(4):1298.
[20] Zhao A ,Wu J,Li SH,et al. Injectable conductive hydrogel can reduce pacing threshold and enhance efficacy of cardiac pacemaker[J]. Theranostics,2021,11(8):3948-3960.
[21] Zhang D,Tu H,Wadman MC,et al. Substrates and potential therapeutics of ventricular arrhythmias in heart failure[J]. Eur J Pharmacol,2018,833:349-356.
[22] Rodriguez-Rivera GJ,Post A,John M,et al. Injectable hydrogel electrodes as conduction highways to restore native pacing[J]. Nat Commun,2024,15(1):64.
[23] Lee M,Kim MC,Lee JY. Nanomaterial-based electrically conductive hydrogels for cardiac tissue repair[J]. Int J Nanomedicine,2022,17:6181-6200.
[24] Song X,Zhang J,Shen S,et al. Cardiac-adaptive conductive hydrogel patch enabling construction of mechanical-electrical anisotropic microenvironment for heart repair[J]. Research (Wash D C),2023,6:0161.
[25] Shen S,Zhang J,Han Y,et al. A core-shell nanoreinforced ion-conductive implantable hydrogel bioelectronic patch with high sensitivity and bioactivity for real-time synchronous heart monitoring and repairing[J]. Adv Healthc Mater,2023,12(29):e2301990.
[26] He Y,L i Q,C hen P,et al. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention[J]. Nat Commun,2022,13(1):7666.
[27] Lee M,Park J,Choe G,et al. A conductive and adhesive hydrogel composed of MXene nanoflakes as a paintable cardiac patch for infarcted heart repair[J]. ACS Nano,2023,17(13):12290-12304.
[28] Zhang J,Shen S,Lin R,et al. Highly stretchable and biocompatible wrinkled nanoclay-composite hydrogel with enhanced sensing capability for precise detection of myocardial infarction[J]. Adv Mater,2023,35(9):e2209497.
[29] Wang H,Yi X,Liu T,et al. An integrally formed Janus hydrogel for robust wet-tissue adhesive and anti-postoperative adhesion[J]. Adv Mater,2023,35(23):e2300394.
[30] Hou Y,Li Y,Li Y,et al. Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhe sion[J]. ACS Nano,2023,17(3):2745-2760.
[31] Li XP,Qu KY,Zhou B,et al. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues[J]. Colloids Surf B Biointerfaces,2021,205:111844.
[32] Xu D,Wang Y,Sun L,et al. Living anisotropic structural color hydrogels for cardiotoxicity screening[J]. ACS Nano,2023,17(15):15180-15188.
[33] Qiu D,Peng L,Ghista DN,et al. Left atrial remodeling mechanisms associated with atrial fibrillation[J]. Cardiovasc Eng Technol,2021,12(3):361-372.
相似文献/References:
[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(1):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(1):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(1):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(1):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(1):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(1):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(1):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(1):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(1):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]