参考文献/References:
[1] Song P,Fang Z,Wang H,et al. Global and regional prevalence,burden,and risk factors for carotid atherosclerosis:a systematic review,meta-analysis,and modelling study[J]. Lancet Glob Health,2020,8(5):e721-e729.
[2] Roth GA,Mensah GA,Johnson CO,et al. Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[3] Xue J,Chen L,Cheng H,et al. The identification and validation of hub genes associated with acute myocardial infarction using weighted gene co-expression network analysis[J]. J Cardiovasc Dev Dis,2022,9(1):30.
[4] Gonzalez MJ,Brito R,Gajardo A I,et al. Myocardial reperfusion injury and oxidative stress:therapeutic opportunities[J]. World J Cardiol,2018,10(9):74-86.
[5] Saad N,Duroux RI,Touitou I,et al. MicroRNAs in inflammasomopathies[J]. Immunol Lett,2023,256-257:48-54.
[6] Peng C,Li J. Editorial:MicroRNAs in endocrinology and cell signaling[J]. Front Endocrinol (Lausanne),2022,13:1118426.
[7] Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases:a comprehensive review[J]. Mol Cell Biochem,2024. DOI:10.1007/s11010-023-04919-5.
[8] Elton TS,Selemon H,Elton SM,et al. Regulation of the MIR155 host gene in physiological and pathological processes[J]. Gene,2013,532(1):1-12.
[9] Daily ZA,Al-Ghurabei BH,Al-Qarakhli AMA,et al. MicroRNA-155 (miR-155) as an accurate biomarker of periodontal status and coronary heart disease severity:a case-control study[J]. BMC Oral Health,2023,23(1):868.
[10] Luo Y,Deng X,Chen Q,et al. Up-regulation of miR-155 protects against chronic heart failure by inhibiting HIF-1alpha[J]. Am J Transl Res,2023,15(11):6425-6436.
[11] Hu C,Liao J,Huang R,et al. MicroRNA-155-5p in serum derived-exosomes promotes ischaemia-reperfusion injury by reducing CypD ubiquitination by NEDD4[J]. ESC Heart Fail,2023,10(2):1144-1157.
[12] Xi J,Li QQ,Li BQ,et al. MiR-155 inhibition represents a potential valuable regulator in mitigating myocardial hypoxia/reoxygenation injury through targeting BAG5 and MAPK/JNK signaling[J]. Mol Med Rep,2020,21(3):1011-1020.
[13] Chen JG,Xu XM,Ji H,et al. Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1alpha in rats[J]. Iran J Basic Med Sci,2019,22(9):1050-1058.
[14] Wu HY,Liu K,Zhang JL. LINC00240/miR-155 axis regulates function of trophoblasts and M2 macrophage polarization via modulating oxidative stress-induced pyroptosis in preeclampsia[J]. Mol Med,2022,28(1):119.
[15] Wang C,Zhang C,Liu L,et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther,2017,25(1):192-204.
[16] Wang H,Bei Y,Huang P,et al. Inhibition of miR-155 protects against LPS-induced cardiac dysfunction and apoptosis in mice[J]. Mol Ther Nucleic Acids,2016,5(10):e374.
[17] Yang Y,Guo Z,Chen W,et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2[J]. Mol Ther,2021,29(3):1226-1238.
[18] Shi Y,Li K,Xu K,et al. MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways[J]. Eur Rev Med Pharmacol Sci,2020,24(3):1408-1419.
[19] Wang Q,Li C,Zhu Z,et al. miR-155-5p antagonizes the apoptotic effect of bufalin in triple-negative breast cancer cells[J]. Anticancer Drugs,2016,27(1):9-16.
[20] Shi Y,Li Z,Li K,et al. miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/ TXNIP/NLRP3 pathway[J]. Acta Biochim Pol,2022,69(4):787-793.
[21] Luo Y,Fu X,Ru R,et al. CpG oligodeoxynucleotides induces apoptosis of human bladder cancer cells via caspase-3-Bax/Bcl-2-p53 axis[J]. Arch Med Res,2020,51(3):233-244.
[22] Seervi M,Rani A,Sharma AK,et al. ROS mediated ER stress induces Bax-Bak dependent and independent apoptosis in response to Thioridazine[J]. Biomed Pharmacother,2018,106:200-209.
[23] Huang YK,Chang KC,Li CY,et al. AKR1B1 represses glioma cell proliferation through p38 MAPK-mediated Bcl-2/BAX/caspase-3 apoptotic signaling pathways[J]. Curr Issues Mol Biol,2023,45(4):3391-3405.
[24] Czabotar PE,Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis[J]. Nat Rev Mol Cell Biol,2023,24(10):732-748.
[25] Edlich F. Bcl-2 proteins and apoptosis:recent insights and unknowns[J]. Biochem Biophys Res Commun,2018,500(1):26-34.
[26] Fan L,He Z,Wang L,et al. Alterations of Bax/Bcl-2 ratio contribute to NaAsO2 induced thyrotoxicity in human thyroid follicular epithelial cells and SD rats[J]. Ecotoxicol Environ Saf,2023,264:115449.
[27] Azimian H,Dayyani M,Toossi M,et al. Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy[J]. Iran J Basic Med Sci,2018,21(3):325-332.
[28] Del Principe MI,Dal Bo M,Bittolo T,et al. Clinical significance of bax/bcl-2 ratio in chronic lymphocytic leukemia[J]. Haematologica,2016,101(1):77-85.
相似文献/References:
[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(10):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(10):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(10):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(10):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(10):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(10):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(10):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(10):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]