[1]刘承哲 江洪 余锂镭.心血管疾病自主神经调控的交叉策略研究新进展[J].心血管病学进展,2024,(8):742.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.015]
 LIU Chengzhe,JIANG Hong,YU Lilei.New Advances in Cross-Cutting Technologies For Autonomic Modulation in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2024,(8):742.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.015]
点击复制

心血管疾病自主神经调控的交叉策略研究新进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年8期
页码:
742
栏目:
综述
出版日期:
2024-08-25

文章信息/Info

Title:
New Advances in Cross-Cutting Technologies For Autonomic Modulation in Cardiovascular Disease
作者:
刘承哲 江洪 余锂镭
(武汉大学人民医院心血管医院心内科 武汉大学心脏自主神经研究中心 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
LIU ChengzheJIANG HongYU Lilei
(Department of Cardiology,Cardiovascular Hospital,Renmin Hospital of Wuhan University,Cardiac Autonomic Nervous Research Center,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
心脏自主神经神经调控医工交叉功能性纳米材料
Keywords:
Cardiac autonomic nerveNeuromodulationMedicine-engineering interdisciplinary researchFunctional nanomaterials
DOI:
10.16806/j.cnki.issn.1004-3934.2024.08.015
摘要:
自主神经失衡被认为在心律失常等心血管疾病的病理生理机制中至关重要,针对自主神经调控心血管疾病已成为一个研究热点。随着材料科学、医学、物理学为代表的多学科快速发展和交叉融合,近几十年来神经调控领域取得了重大进展,针对自主神经调控心血管疾病已开发了许多新的干预策略。现重点综述心脏自主神经调控领域中交叉策略研究新进展,以及目前技术的不足和改进方向,指导自主神经调控治疗心血管疾病取得进一步转化应用。
Abstract:
Autonomic imbalance is thought to be crucial in the pathophysiological mechanisms of cardiovascular diseases such as arrhythmias. Autonomic modulation of cardiovascular diseases has become a research hotspot. With the rapid development and intersection of multiple disciplines,such as materials science,medicine,and physics,the field of neuromodulation has made significant progress in recent decades. For cardiovascular diseases,many new intervention strategies have been developed for autonomic neuromodulation. We now focus on reviewing the new advances in cross-cutting strategies in the field of cardiac autonomic neuromodulation, as well as the shortcomings and directions for improvement of the current technology, to guide the autonomic neuromodulation therapy for cardiovascular diseases to achieve further translational applications

参考文献/References:

[1] Giannino G,Braia V,Griffith Brookles C,et al. The intrinsic cardiac nervous system:from pathophysiology to therapeutic implications[J]. Biology (Basel),2024,13(2):105.

[2] Herring N,Kalla M,Paterson DJ. The autonomic nervous system and cardiac arrhythmias:current concepts and emerging therapies[J]. Nat Rev Cardiol,2019,16(12):707-726.

[3] Yu L,Scherlag BJ,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:a noninvasive approach to treat the initial phase of atrial fibrillation[J]. Heart Rhythm,2013,10(3):428-435.

[4] Yu L,Wang S,Zhou X,et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in?a?post-infarction canine model[J]. JACC Clin Electrophysiol,2016,2(3):330-339.

[5] Stavrakis S,Humphrey MB,Scherlag BJ,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial?fibrillation[J]. J Am Coll Cardiol,2015,65(9):867-875.

[6] Yu L,Huang B,Po SS,et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction:a proof-of-concept study[J]. JACC Cardiovasc Interv,2017,10(15):1511-1520.

[7] Rosson S,de Filippis R,Croatto G,et al. Brain stimulation and other biological non-pharmacological interventions in mental disorders:an umbrella review[J]. Neurosci Biobehav Rev,2022,139:104743.

[8] Soltani D,Samimi S,Vasheghani-Farahani A,et al. Electromagnetic field therapy in cardiovascular diseases:a review of patents,clinically effective devices,and mechanism of therapeutic effects[J]. Trends Cardiovasc Med,2023,33(2):72-78.

[9] Wang S,Zhou X,Huang B,et al. Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia[J]. Sci Rep,2016,6:30783.

[10] Lai Y,Zhou X,Guo F,et al. Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity[J]. Cardiovasc Res,2022,118(7):1821-1834.

[11] Markman TM,Hamilton RH,Marchlinski FE,et al. Case series of transcutaneous magnetic stimulation for ventricular tachycardia storm[J]. JAMA,2020,323(21):2200-2202.

[12] Yu L,Scherlag BS,Dormer K,et al. Targeted ganglionated plexi denervation using magnetic nanoparticles carrying calcium chloride payload[J]. JACC Clin Electrophysiol,2018,4(10):1347-1358.

[13] Zhang D,Wang X,Lin J,et al. Multi-frequency therapeutic ultrasound:a review[J]. Ultrason Sonochem,2023,100:106608.

[14] Yao Y,Qian J,Rong S,et al. Cardiac denervation for arrhythmia treatment with transesophageal ultrasonic strategy in canine models[J]. Ultrasound Med Biol,2019,45(2):490-499.

[15] Xiang C,Cheng Y,Yu X,et al. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia[J]. Heart Rhythm,2024,21(3):340-348.

[16] Azizi M,Schmieder RE,Mahfoud F,et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO):a multicentre,international,single-blind,randomised,sham-controlled trial[J]. Lancet,2018,391(10137):2335-2345.

[17] Azizi M,Sanghvi K,Saxena M,et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO):a randomised,multicentre,single-blind,sham-controlled trial[J]. Lancet,2021,397(10293):2476-2486.

[18] Fengler K,Rommel KP,Blazek S,et al. A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN)[J]. Circulation,2019,139(5):590-600.

[19] Wang Q,Guo R,Rong S,et al. Noninvasive renal sympathetic denervation by extracorporeal high-intensity focused ultrasound in a pre-clinical canine model[J]. J Am Coll Cardiol,2013,61(21):2185-2192.

[20] Rong S,Zhu H,Liu D,et al. Noninvasive renal denervation for resistant hypertension using high-intensity focused ultrasound[J]. Hypertension,2015,66(4):e22-e25.

[21] Neuzil P,Ormiston J,Brinton TJ,et al. Externally delivered focused ultrasound?for renal denervation[J]. JACC Cardiovasc Interv,2016,9(12):1292-1299.

[22] Ibsen S,Tong A,Schutt C,et al. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans[J]. Nat Commun,2015,6:8264.

[23] Duque M,Lee-Kubli CA,Tufail Y,et al. Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels[J]. Nat Commun,2022,13(1):600.

[24] Ding Q,Liu X,Qi Y,et al. TRPA1 promotes the maturation of embryonic stem cell-derived cardiomyocytes by regulating mitochondrial biogenesis and dynamics[J]. Stem Cell Res Ther,2023,14(1):158.

[25] Javorka K,Ma?a?ová K,Javorka M,et al. Mechanisms of cardiovascular changes of phototherapy in newborns with hyperbilirubinemia[J]. Physiol Res,2023,72(S1):S1-S9.

[26] Wang S,Wu L,Li X,et al. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model[J]. J Neuroinflammation,2019,16(1):139.

[27] Sato T,Kamada R,Koizumi T,et al. Refractory ventricular tachycardia in a patient with a left ventricular assist device successfully treated with stellate ganglion phototherapy[J]. Can J Cardiol,2020,36(12):1977.e1-1977.e3.

[28] Zhang F,Wang LP,Boyden ES,et al. Channelrhodopsin-2 and optical control of excitable cells[J]. Nat Methods,2006,3(10):785-792.

[29] Nyns ECA,Kip A,Bart CI,et al. Optogenetic termination of ventricular arrhythmias in the whole heart:towards biological cardiac rhythm management[J]. Eur Heart J,2017,38(27):2132-2136.

[30] Yu L,Zhou L,Cao G,et al. Optogenetic modulation of cardiac?sympathetic nerve activity to prevent ventricular arrhythmias[J]. J Am Coll Cardiol,2017,70(22):2778-2790.

[31] Ye T,Lai Y,Wang Z,et al. Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation[J]. Adv Funct Mater,2019,29(36):1902128.1-1902128.9.

[32] Zhang L,Guo F,Xu S,et al. AIEgen-based covalent organic frameworks for preventing malignant ventricular arrhythmias via local hyperthermia therapy[J]. Adv Mater,2023:e2304620.

[33] Zhong-Lin W. Piezoelectric nanogenerators—Their principle and potential applications[J]. 2006,35(11):897-903.

[34] Zhang Y,Zhou L,Gao X,et al. Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation[J]. Nano Energy,2021,89(Pt.A):106319.

[35] Zhou L,Zhang Y,Cao G,et al. Wireless Self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia[J]. Adv Sci (Weinh),2023,10(9):e2205551.

[36] Tang W,Sun Q,Wang ZL. Self-powered sensing in wearable electronics─A paradigm shift technology[J]. Chem Rev,2023,123(21):12105-12134.

[37] Sun Y,Chao S,Ouyang H,et al. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment[J]. Sci Bull (Beijing),2022,67(12):1284-1294.

相似文献/References:

[1]吴静静 李盼盼 周俊超 潘佳琪 胡威.神经调控在高血压治疗中的研究进展[J].心血管病学进展,2024,(9):839.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.016]
 WU Jingjing,LI Panpan,ZHOU Junchao,et al.Neuromodulation in Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2024,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.016]

更新日期/Last Update: 2024-09-13