参考文献/References:
[1] Giannino G,Braia V,Griffith Brookles C,et al. The intrinsic cardiac nervous system:from pathophysiology to therapeutic implications[J]. Biology (Basel),2024,13(2):105.
[2] Herring N,Kalla M,Paterson DJ. The autonomic nervous system and cardiac arrhythmias:current concepts and emerging therapies[J]. Nat Rev Cardiol,2019,16(12):707-726.
[3] Yu L,Scherlag BJ,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:a noninvasive approach to treat the initial phase of atrial fibrillation[J]. Heart Rhythm,2013,10(3):428-435.
[4] Yu L,Wang S,Zhou X,et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in?a?post-infarction canine model[J]. JACC Clin Electrophysiol,2016,2(3):330-339.
[5] Stavrakis S,Humphrey MB,Scherlag BJ,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial?fibrillation[J]. J Am Coll Cardiol,2015,65(9):867-875.
[6] Yu L,Huang B,Po SS,et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction:a proof-of-concept study[J]. JACC Cardiovasc Interv,2017,10(15):1511-1520.
[7] Rosson S,de Filippis R,Croatto G,et al. Brain stimulation and other biological non-pharmacological interventions in mental disorders:an umbrella review[J]. Neurosci Biobehav Rev,2022,139:104743.
[8] Soltani D,Samimi S,Vasheghani-Farahani A,et al. Electromagnetic field therapy in cardiovascular diseases:a review of patents,clinically effective devices,and mechanism of therapeutic effects[J]. Trends Cardiovasc Med,2023,33(2):72-78.
[9] Wang S,Zhou X,Huang B,et al. Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia[J]. Sci Rep,2016,6:30783.
[10] Lai Y,Zhou X,Guo F,et al. Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity[J]. Cardiovasc Res,2022,118(7):1821-1834.
[11] Markman TM,Hamilton RH,Marchlinski FE,et al. Case series of transcutaneous magnetic stimulation for ventricular tachycardia storm[J]. JAMA,2020,323(21):2200-2202.
[12] Yu L,Scherlag BS,Dormer K,et al. Targeted ganglionated plexi denervation using magnetic nanoparticles carrying calcium chloride payload[J]. JACC Clin Electrophysiol,2018,4(10):1347-1358.
[13] Zhang D,Wang X,Lin J,et al. Multi-frequency therapeutic ultrasound:a review[J]. Ultrason Sonochem,2023,100:106608.
[14] Yao Y,Qian J,Rong S,et al. Cardiac denervation for arrhythmia treatment with transesophageal ultrasonic strategy in canine models[J]. Ultrasound Med Biol,2019,45(2):490-499.
[15] Xiang C,Cheng Y,Yu X,et al. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia[J]. Heart Rhythm,2024,21(3):340-348.
[16] Azizi M,Schmieder RE,Mahfoud F,et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO):a multicentre,international,single-blind,randomised,sham-controlled trial[J]. Lancet,2018,391(10137):2335-2345.
[17] Azizi M,Sanghvi K,Saxena M,et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO):a randomised,multicentre,single-blind,sham-controlled trial[J]. Lancet,2021,397(10293):2476-2486.
[18] Fengler K,Rommel KP,Blazek S,et al. A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN)[J]. Circulation,2019,139(5):590-600.
[19] Wang Q,Guo R,Rong S,et al. Noninvasive renal sympathetic denervation by extracorporeal high-intensity focused ultrasound in a pre-clinical canine model[J]. J Am Coll Cardiol,2013,61(21):2185-2192.
[20] Rong S,Zhu H,Liu D,et al. Noninvasive renal denervation for resistant hypertension using high-intensity focused ultrasound[J]. Hypertension,2015,66(4):e22-e25.
[21] Neuzil P,Ormiston J,Brinton TJ,et al. Externally delivered focused ultrasound?for renal denervation[J]. JACC Cardiovasc Interv,2016,9(12):1292-1299.
[22] Ibsen S,Tong A,Schutt C,et al. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans[J]. Nat Commun,2015,6:8264.
[23] Duque M,Lee-Kubli CA,Tufail Y,et al. Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels[J]. Nat Commun,2022,13(1):600.
[24] Ding Q,Liu X,Qi Y,et al. TRPA1 promotes the maturation of embryonic stem cell-derived cardiomyocytes by regulating mitochondrial biogenesis and dynamics[J]. Stem Cell Res Ther,2023,14(1):158.
[25] Javorka K,Ma?a?ová K,Javorka M,et al. Mechanisms of cardiovascular changes of phototherapy in newborns with hyperbilirubinemia[J]. Physiol Res,2023,72(S1):S1-S9.
[26] Wang S,Wu L,Li X,et al. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model[J]. J Neuroinflammation,2019,16(1):139.
[27] Sato T,Kamada R,Koizumi T,et al. Refractory ventricular tachycardia in a patient with a left ventricular assist device successfully treated with stellate ganglion phototherapy[J]. Can J Cardiol,2020,36(12):1977.e1-1977.e3.
[28] Zhang F,Wang LP,Boyden ES,et al. Channelrhodopsin-2 and optical control of excitable cells[J]. Nat Methods,2006,3(10):785-792.
[29] Nyns ECA,Kip A,Bart CI,et al. Optogenetic termination of ventricular arrhythmias in the whole heart:towards biological cardiac rhythm management[J]. Eur Heart J,2017,38(27):2132-2136.
[30] Yu L,Zhou L,Cao G,et al. Optogenetic modulation of cardiac?sympathetic nerve activity to prevent ventricular arrhythmias[J]. J Am Coll Cardiol,2017,70(22):2778-2790.
[31] Ye T,Lai Y,Wang Z,et al. Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation[J]. Adv Funct Mater,2019,29(36):1902128.1-1902128.9.
[32] Zhang L,Guo F,Xu S,et al. AIEgen-based covalent organic frameworks for preventing malignant ventricular arrhythmias via local hyperthermia therapy[J]. Adv Mater,2023:e2304620.
[33] Zhong-Lin W. Piezoelectric nanogenerators—Their principle and potential applications[J]. 2006,35(11):897-903.
[34] Zhang Y,Zhou L,Gao X,et al. Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation[J]. Nano Energy,2021,89(Pt.A):106319.
[35] Zhou L,Zhang Y,Cao G,et al. Wireless Self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia[J]. Adv Sci (Weinh),2023,10(9):e2205551.
[36] Tang W,Sun Q,Wang ZL. Self-powered sensing in wearable electronics─A paradigm shift technology[J]. Chem Rev,2023,123(21):12105-12134.
[37] Sun Y,Chao S,Ouyang H,et al. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment[J]. Sci Bull (Beijing),2022,67(12):1284-1294.