[1]杨娜 汤宝鹏 孙华鑫 喜林强 商鲁翔 王倩辉迪拉热·太外库力宋洁周贤惠.β1肾上腺素能受体自身抗体激活对心室空间电生理特性的影响及其干预研究[J].心血管病学进展,2024,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.017]
 YANG Na,TANG Baopeng,SUN Huaxin,et al.The Effect of 1-adrenergic Receptor Activation on the Electrophysiological Properties of the Ventricular Space and its Interventional Study[J].Advances in Cardiovascular Diseases,2024,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.017]
点击复制

β1肾上腺素能受体自身抗体激活对心室空间电生理特性的影响及其干预研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年7期
页码:
654
栏目:
论著
出版日期:
2024-07-25

文章信息/Info

Title:
The Effect of 1-adrenergic Receptor Activation on the Electrophysiological Properties of the Ventricular Space and its Interventional Study
作者:
杨娜1 汤宝鹏 1 孙华鑫 2 喜林强 1商鲁翔3 王倩辉1迪拉热·太外库力1宋洁1周贤惠1
(1.新疆医科大学第一附属医院心脏中心起搏电生理科 新疆心电生理与心脏重塑重点实验室,新疆 乌鲁木齐 830054;2.西南交通大学附属医院 成都市第三人民医院心内科 成都市心血管病研究所,四川 成都 610014;3.山东第一医科大学第一附属医院(山东省千佛山医院)
Author(s):
YANG Na1TANG Baopeng1SUN Huaxin2XI Linqiang1SHANG Luxiang3WANG Qianhui1Dilaje·Taiwaikuli1SONG Jie1ZHOU Xianhui1
(1.Department of Pacing Electrophysiology, Cardiac Centre, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodelling, Urumqi 830054, Xinjiang, China; 2.Department of Cardiology,The Affiliated Hospital of Southwest Jiaotong University,The Third People’s Hospital of Chengdu , Cardiovascular Disease Research Institute of Chengdu, Chengdu 610031, Sichuan,China; 3.Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Province Thousand Buddhas Hospital), Shandong Province, China Key Laboratory of Cardiac Arrhythmia, Jinan 250014,Shandong China) (82100343822600658226006482060069)(DXWL2022-04)(XJ2023G168) ,E-mail:zhouxhuiyf@163.com
关键词:
β1肾上腺素能受体自身抗体室性心律失常空间电生理特性纤维化比索洛尔
Keywords:
1-adrenergic receptor autoantibodies Ventricular arrhythmia Spatial electrophysiological propertiesFibrosis Bisoprolol
DOI:
10.16806/j.cnki.issn.1004-3934.2024.07.017
摘要:
目的 室性心律失常的发生与β1肾上腺素能受体自身抗体(β1AAbs)有关。本研究旨在探讨β1AAbs对大鼠心室空间电生理特性的作用及干预效果。方法 30只6~8周龄雄性SD大鼠(体重180~220g)随机分为3组(n=10):对照组、β1AAbs组和比索洛尔组。在0、2、4、6周经背部多点注射β1肾上腺素能受体第二细胞外环抗原肽(0.32 mg/只)建立主动免疫室性心律失常易感模型。测定不同时间节点的血清β1AAbs水平验证模型。在心室不同区域测量电生理参数心室有效不应期、ERP离散度、传导速度和传导异质性。马松染色检测心室组织不同区域的纤维化水平。结果 与对照组相比,β1AAbs组与比索洛尔组自第2周至第8周β1AAbs水平显著增长(P<0.05)。与对照组和比索洛尔组相比,β1AAbs组的心率显著增加,RR间期、QT间期和QTc明显缩短(P<0.05);不同区域心室有效不应期均明显降低,ERP离散度显著增加(P<0.05),不同区域传导速度降低、传导异质性增加(P<0.05),不同部位胶原容积百分比明显升高(P<0.05),以上参数改变在中间部最为明显,均可被比索洛尔逆转(P<0.05)。结论 β1AAbs可增加心室空间电生理特性改变,其潜在机制可能与不同区域纤维化程度有关,比索洛尔具有潜在治疗价值。
Abstract:
Objective The occurrence of ventricular arrhythmias has been associated with the β1 adrenergic receptor autoantibodies β1AAbs. The aim of this study was to investigate the role of β1AAbs on the electrophysiological properties of rat ventricular space and to study its intervention. Methods Thirty 6- to 8-week-old male SD rats (weighing 180 to 220 g) were randomly divided into 3 groups (n-10): control group, β1AAbs group, and bisoprolol group. Active immunisation ventricular arrhythmia susceptibility model was established by multi-point injection of β1-AR extracellular second cyclic antigenic peptide (0.32 mg/each) via the back at 0, 2, 4 and 6 weeks. Serum β1AAbs titre levels at different time points were measured to validate the model. The electrophysiological parameters effective response period (VERP), ERP dispersion, conduction velocity and conduction heterogeneity were measured in different regions of the ventricle. Masson staining was used to detect fibrosis levels in different regions of ventricular tissue. Results The level of β1AAbs increased significantly from week 2 to week 8 in the β1AAbs group compared with the control group and the bisoprolol group ( P < 0.05). Compared with the control and bisoprolol groups, the β1AAbs group showed a significant increase in heart rate and a significant shortening of RR interval, QT interval, and QTc ( P<0.05); a significant decrease in VERP in different regions, a significant increase in ERP dispersion (P<0.05), a decrease in conduction velocity in different regions and an increase in conduction heterogeneity (P<0.05), and a significant increase in the percentage of collagen volume in different sites (P<0.05), and the above parameter changes were most pronounced in the middle section, all of which could be reversed by bisoprolol (P<0.05). Conclusion β1AAbs can increase the electrophysiological characteristics of ventricular space changes, the underlying mechanism may be related to the degree of fibrosis in different regions, and bisoprolol has potential therapeutic value.

参考文献/References:

[1] Cronin EM,Bogun FM,Maury P,et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias[J]. Europace,2019,21(8):1143-1144.

[2] 曹克将,陈柯萍,陈明龙,等. 2020室性心律失常中国专家共识(2016共识升级版)[J]. 中国心脏起搏与心电生理杂志,2020,34(3):189-253.

[3] Za??ska-Koci?cka M,Wojdyńska Z,Kalisz M,et al. Epicardial fat and ventricular arrhythmias[J]. Heart Rhythm,2024,21(2):206-212.

[4] Lu Y Y,Chen YC,Lin YK,et al. Electrical and structural insights into right ventricular outflow tract arrhythmogenesis[J]. Int J Mol Sci,2023,24(14):11795.

[5] Bhaskaran A,De Silva K,KumaR S. Contemporary updates on ventricular arrhythmias:from mechanisms to management[J]. Intern Med J,2023,53(6):892-906.

[6] Adameova A,Shah AK,Dhalla NS. Role of oxidative stress in the genesis of ventricular arrhythmias[J]. Int J Mol Sci,2020,21(12):4200.

[7] Lazzerini PE,LaghI-Pasini F,Boutjdir M,et al. Anti-Ro/SSA antibodies and the autoimmune long-QT syndrome[J]. Front Med (Lausanne),2021,8:730161.

[8] Qu YS,Lazzerini PE,Capecchi PL,et al. Autoimmune calcium channelopathies and cardiac electrical abnormalities[J]. Front Cardiovasc Med,2019,6:54.

[9] Maguy A,Tardif JC,Busseuil D,et al. Autoantibody signature in cardiac arrest[J]. Circulation,2020,141(22):1764-1774.

[10] Lee HC,Huang KT,Wang XL,et al. Autoantibodies and cardiac arrhythmias[J]. Heart Rhythm,2011,8(11):1788-1795.

[11] Shang L,Zhang L,Shao M,et al. Elevated β1-adrenergic receptor autoantibody levels increase atrial fibrillation susceptibility by promoting atrial fibrosis[J]. Front Physiol,2020,11:76.

[12] Sun H,Song J,Li K,et al. Increased β1-adrenergic receptor antibody confers a vulnerable substrate for atrial fibrillation via mediating Ca2+ mishandling and atrial fibrosis in active immunization rabbit models[J]. Clin Sci (Lond),2023,137(2):195-217.

[13] 宋洁,孙华鑫,张小雪,等. 桥粒重塑参与β1肾上腺素能受体自身抗体诱导的室性心律失常[J]. 中华心律失常学杂志,2023,27(1):71-78.

[14] Luo Y,Zhang Y,Han X,et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis[J]. EBioMedicine,2022,82:104087.

[15] Brisinda D,Sorbo AR,Venuti A,et al. Anti-β-adrenoceptors autoimmunity causing ’idiopathic’ arrhythmias and cardiomyopathy[J]. Circ J,2012,76(6):1345-1353.

[16] Chiale PA,Ferrari I,Mahler E,et al. Differential profile and biochemical effects of antiautonomic membrane receptor antibodies in ventricular arrhythmias and sinus node dysfunction[J]. Circulation,2001,103(13):1765-1771.

[17] Del Corsso C,de Carvalho AC,Martino HF,et al. Sera from patients with idiopathic dilated cardiomyopathy decrease ICa in cardiomyocytes isolated from rabbits[J]. Am J Physiol Heart Circ Physiol,2004,287(5):H1928-H1936.

[18] Zuo L,Du Y,Ma J,et al. Pro-arrhythmic action of autoantibodies against the second extracellular loop of β1-adrenoceptor and its underlying molecular mechanisms[J]. Int J Cardiol,2015,198:251-258.

[19] Maciel L,Pedrosa RC,Campos de Carvalho AC,et al. Ventricular arrhythmias are related to the presence of autoantibodies with adrenergic activity in chronic chagasic patients with preserved left ventricular function[J]. J Card Fail,2012,18(5):423- 431.

[20] Bacova BS,Radosinska J,Wallukat G,et al. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats[J]. Int J Mol Sci, 2020,21(2):526.

[21] Jiménez MAV,Nascimento JHM,Monnerat G,et al. Autoantibodies with beta-adrenergic activity from chronic chagasic patients induce cardiac arrhythmias and early afterdepolarization in a drug-induced LQT2 rabbit hearts[J]. Int J Cardiol,2017,240:354-359.

[22] Xue G,Yang X,Zhan G,et al. Sodium-Glucose cotransporter 2 inhibitor empagliflozin decreases ventricular arrhythmia susceptibility by alleviating electrophysiological remodeling post-myocardial-infarction in mice[J]. Front Pharmacol,2022,13:988408.

[23] Medei EH,Nascimento JH,Pedrosa RC,et al. Antibodies with beta-adrenergic activity from chronic chagasic patients modulate the QT interval and M cell action potential duration[J]. Europace,2008,10(7):868-876.

[24] Zhao YH,Huang HX,Liu P,et al. β1-Adrenoceptor autoantibodies increase the susceptibility to ventricular arrhythmias involving abnormal repolarization in guinea-pigs[J]. Exp Physiol,2017,102(1):25-33.

[25] Zhao Y,Huang H,Du Y,et al. β1-Adrenoceptor autoantibodies affect action potential duration and delayed rectifier potassium currents in guinea pigs[J]. Cardiovasc Toxicol 2015,15(1):1-9.

[26] Mendonca Costa C,Gemmell P,Elliott MK,et al. Determining anatomical and electrophysiological detail requirements for computational ventricular models of porcine myocardial infarction[J]. Comput Biol Med,2022,141:105061.

[27] Lee AWC,Nguyen UC,Razeghi O,et al. A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data[J]. Med Image Anal,2019,57:197-213.

[28] Yang T,Pogwizd SM,Walcott GP,et al. Noninvasive activation imaging of ventricular arrhythmias by spatial gradient sparse in frequency domain-application to mapping reentrant ventricular tachycardia[J]. IEEE Trans Med Imaging,2019,38(2):525-539.

[29] Wang Z,Li S,Lai H,et al. Interaction between endothelin-1 and left stellate ganglion activation:a potential mechanism of malignant ventricular arrhythmia during myocardial ischemia[J]. Oxid Med Cell Longev,2019,2019:6508328.

[30] Zhou L,Solhjoo S,Millare B,et al. Effects of regional mitochondrial depolarization on electrical propagation:implications for arrhythmogenesis[J]. Circ Arrhythm Electrophysiol,2014,7(1):143-151.

[31] Luo X,Yu W,Liu Z,et al. Ageing increases cardiac electrical remodelling in rats and mice via NOX4/ROS/CaMKII-mediated calcium signalling[J]. Oxid Med Cell Longev,2022,2022:8538296.

[32] Cui Z,Ni NC,Wu J,et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation[J]. Theranostics,2018, 8(10):2752-2764.

[33] Huang SY,Chen YC,Kao YH,et al. Calcium dysregulation increases right ventricular outflow tract arrhythmogenesis in rabbit model of chronic kidney disease[J]. J Cell Mol Med,2021,25(24):11264-11277.

[34] Zhang DM,Navara R,Yin T,et al. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis[J]. Nat Commun,2021,12(1):5558.

[35] Morales DR,Lipworth BJ,Donnan PT,et al. Respiratory effect of beta-blockers in people with asthma and cardiovascular disease:population-based nested case control study[J]. BMC Med,2017,15(1):18.

[36] Ye T,Zhang C,Wu G,et al. Pinocembrin decreases ventricular fibrillation susceptibility in a rat model of depression[J]. Front Pharmacol,2020,11:547966.

相似文献/References:

[1]张耀庭 李烽 朱永翔 陆丽洁 龙明智.沙库巴曲/缬沙坦在室性心律失常中的研究进展[J].心血管病学进展,2019,(7):982.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.004]
 ZHANG Yaoting,LI Feng,ZHU Yongxiang,et al.Research Progress of Sacubitril/Valsartan in Ventricular Arrhythmia[J].Advances in Cardiovascular Diseases,2019,(7):982.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.004]
[2]梁砚薷李晶洁.神经元型钠通道在室性心律失常发生机制中的作用[J].心血管病学进展,2020,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.012]
 LIANG Yanru,LI Jingjie.Role of Neuronal Sodium Channels in Development of Ventricular Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(7):43.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.012]
[3]刘磊 杨震.心肌梗死后左心室壁瘤相关室性心律失常的形成机制与治疗进展[J].心血管病学进展,2020,(1):46.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.013]
 LIU Lei,YANG Zhen.Mechanism and Progress in Treatment of Post-infarction Left Ventricular Aneurysm with Ventricular Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(7):46.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.013]
[4]罗功名 彭瑜 张钲.碎裂QRS波群对急性心肌梗死的诊断和预后预测价值的研究进展[J].心血管病学进展,2020,(6):579.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.005]
 LUO GongmingPENG YuZHANG Zheng.Fragmented QRS Complex in the Diagnostic and Prognosis Value of Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(7):579.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.005]
[5]赵若寒 罗素新 熊峰 李袁静 黄龙祥.心力衰竭并发复杂性室性心律失常相关因素分析[J].心血管病学进展,2020,(7):782.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.025]
 ZHAO Ruohan,LUO Suxin,XIONG Feng,et al.Analysis of Related Factors of Heart Failure Accompany?span style="">with Complex Ventricular Arrythmia[J].Advances in Cardiovascular Diseases,2020,(7):782.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.025]
[6]杨超,文颐 崔凯军.左室穹顶部起源室性心律失常消融治疗进展[J].心血管病学进展,2021,(2):106.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.003]
 YANG ChaoWEN YiCUI Kaijun.Ablation of Ventricular Arrhythmia Originating from Left Ventricular Summit[J].Advances in Cardiovascular Diseases,2021,(7):106.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.003]
[7]王思博 王连生.心肌梗死后室性心律失常的治疗进展[J].心血管病学进展,2021,(6):481.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.001]
 WANG SiboWANG Liansheng.Treatment of Ventricular Arrhythmias after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2021,(7):481.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.001]
[8]董震宇 商鲁翔 汤宝鹏.立体定向放射治疗在心律失常中的应用进展[J].心血管病学进展,2022,(2):97.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.001]
 DONG ZhenyuSHANG LuxiangTANG Baopeng.Application progress of Stereotactic Body Radiation Therapy in Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(7):97.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.001]
[9]王秀秀 熊峰.左心室假腱索的再认识[J].心血管病学进展,2023,(1):67.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.016]
 WANG Xiuxiu,XIONG Feng.Re-Recognition of Left Ventricular False Tendon[J].Advances in Cardiovascular Diseases,2023,(7):67.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.016]
[10]素比努尔·吾布力卡斯木 李耀东.肾去交感神经术治疗植入型心律转复除颤器植入术后电风暴的研究进展[J].心血管病学进展,2023,(3):208.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.004]
 Subinuer·Wubulikasimu,LI Yaodong.Renal Sympathetic Denervation in Treatment of Electrical Storm After Implantable Cardioverter Defibrillator Implantation[J].Advances in Cardiovascular Diseases,2023,(7):208.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.004]

更新日期/Last Update: 2024-08-09