[1]刘丰齐 王晓彦.代谢重塑在射血分数保留的心力衰竭中的研究进展[J].心血管病学进展,2024,(7):612.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.009]
 LIU Fengqi,WANG Xiaoyan.Metabolic Remodeling in Heart F ailure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2024,(7):612.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.009]
点击复制

代谢重塑在射血分数保留的心力衰竭中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年7期
页码:
612
栏目:
综述
出版日期:
2024-07-25

文章信息/Info

Title:
Metabolic Remodeling in Heart F ailure with Preserved Ejection Fraction
作者:
刘丰齐 王晓彦
(江南大学附属医院心内科,江苏 无锡 214000)
Author(s):
LIU FengqiWANG Xiaoyan
(Department of Cardiology,Affiliated Hospital of Jiangnan University, Wuxi 214000,Jiangsu,China )
关键词:
射血分数保留的心力衰竭代谢重塑代谢性炎症
Keywords:
Heart failure with preserved ejection fractionMetabolic remodelingMetabolic inflammation
DOI:
10.16806/j.cnki.issn.1004-3934.2024.07.009
摘要:
临床上射血分数保留的心力衰竭(HFpEF)定义为伴有心力衰竭症状和体征且左室射血分数≥50%的一种心力衰竭类型,表现为HFpEF相关的心脏结构/功能的异常,如左心室肥大、左心房扩大和舒张功能障碍,且往往合并症多,是由多种致病因素共同导致的结果。尽管目前对HFpEF的发病机制认识仍不足,但还是存在共同的致病通路,最终导致该疾病的发生发展,这主要与代谢有关。现对代谢重塑在HFpEF中分子机制的研究进展综述如下。
Abstract:
In clinical practice,heart failure with preserved ejection fraction(HFpEF) is defined as a type of heart failure with accompanying symptoms and signs of heart failure and left ventricular ejection fraction≥50%. It is characterized by abnormalities in heart structure/function related to HFpEF,such as left ventricular hypertrophy,left atrial enlargement,diastolic dysfunction, and often multiple comorbidities. It is the result of multiple therapeutic factors working together. At present,the understanding of the pathogenesis of HFpEF is still insufficient,but there are still common pathogenic pathways that ultimately lead to the occurrence and development of the disease. This is mainly related to metabolism. The research progress on the molecular mechanism of metabolic remodeling in HFpEF is summarized as follows

参考文献/References:

[1]Schiattarella GG,Alcaide P,Condorelli G,et al. Immunometabolic mechanisms of heart

failure with preserved ejection fraction[J]. Nat Cardiovasc Res,2022,1(3):211-222.

[2] Schiattarella GG,Rodolico D,Hill JA. Metabolic inflammation in heart failure with

preserved ejection fraction[J]. Cardiovasc Res,2021,117(2):423-434.

[3] Osataphan S,Macchi C,Singhal G,et al. SGLT2 inhibition reprograms systemic

metabolism via FGF21-dependent and -independent mechanisms[J]. JCI Insight,2019,4(5):e123130.

[4]Iroz A,Montagner A,Benhamed F,et al. A specific ChREBP and PPARα cross-talk is

required for the glucose-mediated FGF21 response[J]. Cell Rep,2017,21(2):403-416.

[5]Gudenkauf B,Shaya G,Mukherjee M,et al. Insulin resistance is associated with

subclinical myocardial dysfunction and reduced functional capacity in heart failure with

preserved ejection fraction[J]. J Cardiol,2024,83(2):100-104.

[6]Sun Q,Güven B,Wagg CS,et al. Mitochondrial fatty acid oxidation is the major source of cardiac ATP production in heart failure with preserved ejection fraction[J]. Cardiovasc Res,2024,120(4):360-371.

[7]Schiattarella GG,Altamirano F,Tong D,et al. Nitrosative stress drives heart failure with preserved ejection fraction[J]. Nature,2019,568(7752):351-356.

[8]Güven B,Sun Q,Wagg CS,et al. Obesity is a major determinant of impaired cardiac energy metabolism in heart failure with preserved ejection fraction[J]. J Pharmacol Exp Ther,2024,388(1):145-155.

[9] Panico C,Felicetta A,Kunderfranco P,et al. Single-cell RNA sequencing reveals metabolic stress-dependent activation of cardiac macrophages in a model of dyslipidemia-induced diastolic dysfunction[J]. Circulation,2023 Dec 21. Epub ahead of print.

[10]Lau ES,Roshandelpoor A,Zarbafian S,et al. Eicosanoid and eicosanoid-related inflammatory mediators and exercise intolerance in heart failure with preserved ejection

fraction[J]. Nat Commun,2023,14(1):7557.

[11]Yang J,Zou Y,Lv X,et al. Didymin protects pancreatic beta cells by enhancing

mitochondrial function in high-fat diet-induced impaired glucose tolerance[J]. Diabetol Metab Syndr,2024,16(1):7

[12]Ofosu-Boateng M,Shaik F,Choi S,et al. High-fat diet induced obesity promotes

inflammation,oxidative stress,and hepatotoxicity in female FVB/N mice[J]. Biofactors,2024 Jan 6. Epub ahead of print.

[13]Sun H,Olson KC,Gao C,et al. Catabolic defect of branched-chain amino acids

promotes heart failure[J]. Circulation,2016,133(21):2038-2349.

[14]Murashige D,Jang C,Neinast M,et al. Comprehensive quantification of fuel use by

the failing and nonfailing human heart[J]. Science,2020,370(6514):364-368.

[15] Gao C,Hou L. Branched chain amino acids metabolism in heart failure[J]. Front

Nutr,2023,10:1279066.

[16]Murashige D,Jung JW,Neinast MD,et al. Extra-cardiac BCAA catabolism lowers

blood pressure and protects from heart failure[J]. Cell Metab,2022,34(11):1749-1764.e7.

[17] Schwartz B,Gjini P,Gopal DM,et al. Inefficient batteries in heart?failure:metabolic bottlenecks disrupting the mitochondrial ecosystem[J]. JACC Basic Transl Sci,2022,7(11):1161-1179.

[18] Ahmad F,Singh AP,Tomar D,et al. Cardiomyocyte-GSK-3α promotes mPTP

opening and heart failure in mice with chronic pressure overload[J]. J Mol Cell Cardiol,2019,130:65-75.

[19]Tong D,Schiattarella GG,Jiang N,et al. NAD+repletion reverses heart failure

with preserved ejection fraction[J]. Circ Res,2021,128(11):1629-1641.

[20]Higashikuni Y,Liu W,Numata G,et al. NLRP3 inflammasome activation through

heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure

overload[J]. Circulation,2023,147(4):338-355.

[21]Halade GV,Lee DH. Inflammation and resolution signaling in cardiac repair and

heart failure[J]. EBioMedicine,2022,79:103992.

[22] Srinivas BK,Bourdi A,O’Regan JD,et al. Interleukin-1β disruption protects male mice from heart failure with preserved ejection fraction pathogenesis[J]. J Am Heart Assoc,2023,12(14):e029668.

[23] LaPenna KB,Li Z,Doiron JE,et al. Combination sodium nitrite and hydralazine

therapy attenuates heart failure with preserved ejection fraction severity in a " 2-Hit" murine model[J]. J Am Heart Assoc,2023,12(4):e028480.

[24] Momot K,Krauz K,Czarzasta K,et al. Evaluation of nitrosative/oxidative stress and inflammation in heart failure with preserved and reduced ejection fraction[J]. Int J Mol Sci,2023,24(21):15944.

[25] Zuo GF,Wang LG,Huang L,et al. TAX1BP1 downregulation by STAT3 in cardiac fibroblasts contributes to diabetes-induced heart failure with preserved ejection fraction[J]. Biochim Biophys Acta Mol Basis Dis,2024,1870(2):166979.

[26] Cheng X,Zhao H,Wen X,et al. NLRP3-inflammasome inhibition by MCC950

attenuates cardiac and pulmonary artery remodelling in heart failure with preserved

ejection fraction[J]. Life Sci,2023,333:122185.

[27] Shen S,Duan J,Hu J,et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction[J]. Eur J Pharmacol,2022,929:175126.

[28] Liu N,Gong Z,Li Y,et al. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats[J]. J Hypertens,2024,42(2):315-328.

[29] Shi J,Sun J,Liu L,et al. P16ink4a overexpression ameliorates cardiac remodeling of mouse following myocardial infarction via CDK4/pRb pathway[J]. Biochem Biophys

Res Commun,2022,595:62-68.

[30] Liang Y,Gu T,Peng S,et al. p16INK4a?plays critical role in exacerbating inflammaging in high fat diet induced skin[J]. Oxid Med Cell Longev,2022,2022:3415528.

[31] Gu X,Meng H,Peng C,et al. Inflammasome activation and metabolic remodelling in p16-positive aging cells aggravates high-fat diet-induced lung fibrosis by inhibiting

NEDD4L-mediated K48-polyubiquitin-dependent degradation of SGK1[J]. Clin Transl Med,2023,13(6):e1308.

[32] Palmer AK,Xu M,Zhu Y,et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction[J]. Aging Cell,2019,18(3):e12950.

[33] Shu H,Peng Y,Hang W,et al. Trimetazidine in heart failure[J]. Front Pharmacol,2021,11:569132.

[34] Marzilli M,Vinereanu D,Lopaschuk G,et al. Trimetazidine in cardiovascular medicine[J]. Int J Cardiol,2019,293:39-44.

[35] Authors/Task Force Members,McDonagh TA,Metra M,et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure:developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology(ESC) With the special contribution of the Heart Failure Association(HFA) of the ESC[J]. Eur J Heart Fail,2024,26(1):5-17.

[36] Borlaug BA,Reddy YNV,Braun A,et al. Cardiac and metabolic effects of dapagliflozin in heart failure with preserved ejection fraction:the CAMEO-DAPA trial[J]. Circulation,2023,148(10):834-844.

[37] Chen J,Jiang C,Guo M,et al. Effects of SGLT2 inhibitors on cardiac function and health status in chronic heart failure:a systematic review and meta-analysis[J]. Cardiovasc Diabetol,2024,23(1):2.

[38] Pandey AK,Bhatt DL,Pandey A,et al. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction[J]. Eur Heart J,2023,44(37):3640-3651.

[39] Shi YJ,Yang CG,Qiao WB,et al. Sacubitril/valsartan attenuates myocardial inflammation,hypertrophy,and fibrosis in rats with heart failure with preserved ejection fraction[J]. Eur J Pharmacol,2023,961:176170.

[40] Borlaug BA,Kitzman DW,Davies MJ,et al. Semaglutide in HFpEF across obesity class and by body weight reduction:a prespecified analysis of the STEP-HFpEF trial[J]. Nat Med,2023,29(9):2358-2365.

[41] Saad NS,Mashali MA,Repas SJ,et al. Altering calcium sensitivity in heart failure:a crossroads of disease etiology and therapeutic innovation[J]. Int J Mol Sci,2023,24(24):17577.

[42] Li S,Li F,Wang Y,et al. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury:current strategies and future prospective[J]. Drug Deliv,2024,31(1):2298514.

[43] Jardin B,Epstein JA. Emerging mRNA therapies for cardiac fibrosis[J]. Am J Physiol Cell Physiol,2024,326(1):C107-C111.

[44] Yu W,Jiang Y,Xu H,et al. The interaction of gut microbiota and heart failure with preserved ejection fraction:from mechanism to potential therapies[J]. Biomedicines,2023,11(2):442.

相似文献/References:

[1]唐欣 罗素新.心房颤动合并 射血分数保留的心力衰竭的研究进展[J].心血管病学进展,2019,(5):753.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.022]
 TANG Xin,LUO Suxin.Atrial Fibrillation and Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2019,(7):753.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.022]
[2]李海威 姜红 李宪伦.射血分数保留性心力衰竭患者运动康复的研究进展[J].心血管病学进展,2019,(8):1146.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.019]
 LI Haiwei,JIANG Hong,LI Xianlun.Exercise Rehabilitation in Patients with Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2019,(7):1146.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.019]
[3]高鑫 王仲朝.射血分数保留的心力衰竭的药物治疗新进展[J].心血管病学进展,2023,(10):883.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.005]
 GAO Xin,WANG Zhongchao.New Progress in Drug Treatment of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2023,(7):883.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.005]
[4]高棣英 吴铿.SGLT2抑制剂对射血分数保留的心力衰竭的保护作用及机制研究进展[J].心血管病学进展,2024,(3):224.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.008]
 GAO Diying,WU Keng.Protective Effect and Mechanism of SGLT2 Inhibitor on Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2024,(7):224.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.008]
[5]王一华 蒋玉娇 门冰欣 胡娜娜 张亚苹 张锦.铁死亡在射血分数保留的心力衰竭中的研究进展[J].心血管病学进展,2024,(9):816.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.011]
 WANG Yihua,JIANG Yujiao,MEN Bingxin,et al.Ferroptosis in of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2024,(7):816.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.011]

更新日期/Last Update: 2024-08-09