参考文献/References:
[1]Schiattarella GG,Alcaide P,Condorelli G,et al. Immunometabolic mechanisms of heart
failure with preserved ejection fraction[J]. Nat Cardiovasc Res,2022,1(3):211-222.
[2] Schiattarella GG,Rodolico D,Hill JA. Metabolic inflammation in heart failure with
preserved ejection fraction[J]. Cardiovasc Res,2021,117(2):423-434.
[3] Osataphan S,Macchi C,Singhal G,et al. SGLT2 inhibition reprograms systemic
metabolism via FGF21-dependent and -independent mechanisms[J]. JCI Insight,2019,4(5):e123130.
[4]Iroz A,Montagner A,Benhamed F,et al. A specific ChREBP and PPARα cross-talk is
required for the glucose-mediated FGF21 response[J]. Cell Rep,2017,21(2):403-416.
[5]Gudenkauf B,Shaya G,Mukherjee M,et al. Insulin resistance is associated with
subclinical myocardial dysfunction and reduced functional capacity in heart failure with
preserved ejection fraction[J]. J Cardiol,2024,83(2):100-104.
[6]Sun Q,Güven B,Wagg CS,et al. Mitochondrial fatty acid oxidation is the major source of cardiac ATP production in heart failure with preserved ejection fraction[J]. Cardiovasc Res,2024,120(4):360-371.
[7]Schiattarella GG,Altamirano F,Tong D,et al. Nitrosative stress drives heart failure with preserved ejection fraction[J]. Nature,2019,568(7752):351-356.
[8]Güven B,Sun Q,Wagg CS,et al. Obesity is a major determinant of impaired cardiac energy metabolism in heart failure with preserved ejection fraction[J]. J Pharmacol Exp Ther,2024,388(1):145-155.
[9] Panico C,Felicetta A,Kunderfranco P,et al. Single-cell RNA sequencing reveals metabolic stress-dependent activation of cardiac macrophages in a model of dyslipidemia-induced diastolic dysfunction[J]. Circulation,2023 Dec 21. Epub ahead of print.
[10]Lau ES,Roshandelpoor A,Zarbafian S,et al. Eicosanoid and eicosanoid-related inflammatory mediators and exercise intolerance in heart failure with preserved ejection
fraction[J]. Nat Commun,2023,14(1):7557.
[11]Yang J,Zou Y,Lv X,et al. Didymin protects pancreatic beta cells by enhancing
mitochondrial function in high-fat diet-induced impaired glucose tolerance[J]. Diabetol Metab Syndr,2024,16(1):7
[12]Ofosu-Boateng M,Shaik F,Choi S,et al. High-fat diet induced obesity promotes
inflammation,oxidative stress,and hepatotoxicity in female FVB/N mice[J]. Biofactors,2024 Jan 6. Epub ahead of print.
[13]Sun H,Olson KC,Gao C,et al. Catabolic defect of branched-chain amino acids
promotes heart failure[J]. Circulation,2016,133(21):2038-2349.
[14]Murashige D,Jang C,Neinast M,et al. Comprehensive quantification of fuel use by
the failing and nonfailing human heart[J]. Science,2020,370(6514):364-368.
[15] Gao C,Hou L. Branched chain amino acids metabolism in heart failure[J]. Front
Nutr,2023,10:1279066.
[16]Murashige D,Jung JW,Neinast MD,et al. Extra-cardiac BCAA catabolism lowers
blood pressure and protects from heart failure[J]. Cell Metab,2022,34(11):1749-1764.e7.
[17] Schwartz B,Gjini P,Gopal DM,et al. Inefficient batteries in heart?failure:metabolic bottlenecks disrupting the mitochondrial ecosystem[J]. JACC Basic Transl Sci,2022,7(11):1161-1179.
[18] Ahmad F,Singh AP,Tomar D,et al. Cardiomyocyte-GSK-3α promotes mPTP
opening and heart failure in mice with chronic pressure overload[J]. J Mol Cell Cardiol,2019,130:65-75.
[19]Tong D,Schiattarella GG,Jiang N,et al. NAD+repletion reverses heart failure
with preserved ejection fraction[J]. Circ Res,2021,128(11):1629-1641.
[20]Higashikuni Y,Liu W,Numata G,et al. NLRP3 inflammasome activation through
heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure
overload[J]. Circulation,2023,147(4):338-355.
[21]Halade GV,Lee DH. Inflammation and resolution signaling in cardiac repair and
heart failure[J]. EBioMedicine,2022,79:103992.
[22] Srinivas BK,Bourdi A,O’Regan JD,et al. Interleukin-1β disruption protects male mice from heart failure with preserved ejection fraction pathogenesis[J]. J Am Heart Assoc,2023,12(14):e029668.
[23] LaPenna KB,Li Z,Doiron JE,et al. Combination sodium nitrite and hydralazine
therapy attenuates heart failure with preserved ejection fraction severity in a " 2-Hit" murine model[J]. J Am Heart Assoc,2023,12(4):e028480.
[24] Momot K,Krauz K,Czarzasta K,et al. Evaluation of nitrosative/oxidative stress and inflammation in heart failure with preserved and reduced ejection fraction[J]. Int J Mol Sci,2023,24(21):15944.
[25] Zuo GF,Wang LG,Huang L,et al. TAX1BP1 downregulation by STAT3 in cardiac fibroblasts contributes to diabetes-induced heart failure with preserved ejection fraction[J]. Biochim Biophys Acta Mol Basis Dis,2024,1870(2):166979.
[26] Cheng X,Zhao H,Wen X,et al. NLRP3-inflammasome inhibition by MCC950
attenuates cardiac and pulmonary artery remodelling in heart failure with preserved
ejection fraction[J]. Life Sci,2023,333:122185.
[27] Shen S,Duan J,Hu J,et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction[J]. Eur J Pharmacol,2022,929:175126.
[28] Liu N,Gong Z,Li Y,et al. CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats[J]. J Hypertens,2024,42(2):315-328.
[29] Shi J,Sun J,Liu L,et al. P16ink4a overexpression ameliorates cardiac remodeling of mouse following myocardial infarction via CDK4/pRb pathway[J]. Biochem Biophys
Res Commun,2022,595:62-68.
[30] Liang Y,Gu T,Peng S,et al. p16INK4a?plays critical role in exacerbating inflammaging in high fat diet induced skin[J]. Oxid Med Cell Longev,2022,2022:3415528.
[31] Gu X,Meng H,Peng C,et al. Inflammasome activation and metabolic remodelling in p16-positive aging cells aggravates high-fat diet-induced lung fibrosis by inhibiting
NEDD4L-mediated K48-polyubiquitin-dependent degradation of SGK1[J]. Clin Transl Med,2023,13(6):e1308.
[32] Palmer AK,Xu M,Zhu Y,et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction[J]. Aging Cell,2019,18(3):e12950.
[33] Shu H,Peng Y,Hang W,et al. Trimetazidine in heart failure[J]. Front Pharmacol,2021,11:569132.
[34] Marzilli M,Vinereanu D,Lopaschuk G,et al. Trimetazidine in cardiovascular medicine[J]. Int J Cardiol,2019,293:39-44.
[35] Authors/Task Force Members,McDonagh TA,Metra M,et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure:developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology(ESC) With the special contribution of the Heart Failure Association(HFA) of the ESC[J]. Eur J Heart Fail,2024,26(1):5-17.
[36] Borlaug BA,Reddy YNV,Braun A,et al. Cardiac and metabolic effects of dapagliflozin in heart failure with preserved ejection fraction:the CAMEO-DAPA trial[J]. Circulation,2023,148(10):834-844.
[37] Chen J,Jiang C,Guo M,et al. Effects of SGLT2 inhibitors on cardiac function and health status in chronic heart failure:a systematic review and meta-analysis[J]. Cardiovasc Diabetol,2024,23(1):2.
[38] Pandey AK,Bhatt DL,Pandey A,et al. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction[J]. Eur Heart J,2023,44(37):3640-3651.
[39] Shi YJ,Yang CG,Qiao WB,et al. Sacubitril/valsartan attenuates myocardial inflammation,hypertrophy,and fibrosis in rats with heart failure with preserved ejection fraction[J]. Eur J Pharmacol,2023,961:176170.
[40] Borlaug BA,Kitzman DW,Davies MJ,et al. Semaglutide in HFpEF across obesity class and by body weight reduction:a prespecified analysis of the STEP-HFpEF trial[J]. Nat Med,2023,29(9):2358-2365.
[41] Saad NS,Mashali MA,Repas SJ,et al. Altering calcium sensitivity in heart failure:a crossroads of disease etiology and therapeutic innovation[J]. Int J Mol Sci,2023,24(24):17577.
[42] Li S,Li F,Wang Y,et al. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury:current strategies and future prospective[J]. Drug Deliv,2024,31(1):2298514.
[43] Jardin B,Epstein JA. Emerging mRNA therapies for cardiac fibrosis[J]. Am J Physiol Cell Physiol,2024,326(1):C107-C111.
[44] Yu W,Jiang Y,Xu H,et al. The interaction of gut microbiota and heart failure with preserved ejection fraction:from mechanism to potential therapies[J]. Biomedicines,2023,11(2):442.