[1]张赐,康静,朱慕诚,等.高血压分子机制及降压靶点的研究进展[J].心血管病学进展,2024,(5):408.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.006]
 ZHANG Ci,KANG Jing,ZHU Mucheng,et al.Molecular Mechanisms and Antihypertensive Targets of Hypertension[J].Advances in Cardiovascular Diseases,2024,(5):408.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.006]
点击复制

高血压分子机制及降压靶点的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年5期
页码:
408
栏目:
综述
出版日期:
2024-05-25

文章信息/Info

Title:
Molecular Mechanisms and Antihypertensive Targets of Hypertension
作者:
张赐1 康静 1朱慕诚1张正义2
(1.兰州大学第二临床医学院,甘肃 兰州 730030;2.兰州大学第二医院全科医学科,甘肃 兰州 730030)
Author(s):
ZHANG Ci1 KANG Jing 1 ZHU Mucheng 1 ZHANG Zhengyi2
(1.The Second Clinical Medical School,Lanzhou University,Lanzhou 730030,Gansu,China;2.Department of General Medicine,The Second Hospital of Lanzhou UniversityLanzhou 730030,Gansu,China)
关键词:
高血压靶点Elabela序列相似性家族3D蛋白成纤维细胞生长因子21 血管紧张素Ⅱ1型受体
Keywords:
Hypertension targets Elabela Family with sequence similarity 3member D Fibroblast growth factor 21 Angiotensin type 1 receptor
DOI:
10.16806/j.cnki.issn.1004-3934.2024.05.006
摘要:
高血压是导致脑卒中、心肌梗死、心力衰竭和肾衰竭等发展的危险因素,也是导致死亡的主要原因,因此研究高血压的靶点开发新的抗高血压药尤为重要。现总结近年来关于高血压新治疗靶点的研究进展,包括Elabela/Apelin-APJ轴、序列相似性家族3D蛋白、成纤维细胞生长因子21和血管紧张素Ⅱ1型受体的变构调节,以期为抗高血压药的研究提供新的思路和文献支持。
Abstract:
Hypertension has become one of the most important risk factors,leading to the development of stroke,myocardial infarction,heart failure,kidney failure etc.,and which is also a main cause of cardiovascular disease and death. Therefore,exploring potential therapeutic targets of hypertension and developing new drugs is particularly important to treat hypertension and its comorbidities. This review summarizes recent insights into the potential therapeutic targets,including Elabela/Apelin-APJ axis,family with sequence similarity 3,member D (FAM3D),fibroblast growth factor 21 (FGF21) and the allosteric modulation of angiotensin II type 1 receptor (AT1R),aiming to provide new insights to improve conventional antihypertensive drugs and develop novel targets for the treatment of hypertension

参考文献/References:

[1] Mills KT,Stefanescu A,He J. The global epidemiology of hypertension[J]. Nat Rev Nephrol,2020,16(4):223-237.

[2] 中国心血管健康与疾病报告编写组,胡盛寿. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志,2023,38(6):583-612.

[3] Yin R,Yin L,Li L,et al. Hypertension in China:burdens,guidelines and policy responses:a state-of-the-art review[J]. J Hum Hypertens,2022,36(2):126-134.

[4] Wang X,Zhang L,Li P,et al. Apelin/APJ system in inflammation[J]. Int Immunopharmacol,2022,109:108822.

[5] Chapman FA,Nyimanu D,Maguire JJ,et al. The therapeutic potential of apelin in kidney disease[J]. Nat Rev Nephrol,2021,17(12):840-853.

[6] Rossin D,Vanni R,Lo Iacono M,et al. APJ as promising therapeutic target of peptide analogues in myocardial infarction- and hypertension-induced heart failure[J]. Pharmaceutics,2023,15(5):1408.

[7] Xiong M,Chen H,Fan Y,et al. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation[J]. Theranostics,2023,13(10):3387-3401.

[8] Ma Z,Song JJ,Martin S,et al. The Elabela-APJ axis:a promising therapeutic target for heart failure[J]. Heart Fail Rev,2021,26(5):1249-1258.

[9] Li Y,Yang X,Ouyang S,et al. Declined circulating Elabela levels in patients with essential hypertension and its association with impaired vascular function:a preliminary study[J]. Clin Exp Hypertens,2020,42(3):239-243.

[10] Zhang Z,Tang J,Song J,et al. Elabela alleviates ferroptosis,myocardial remodeling,fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling[J]. Free Radic Biol Med,2022,181:130-142.

[11] Chng SC,Ho L,Tian J,et al. ELABELA:a hormone essential for heart development signals via the apelin receptor[J]. Dev Cell,2013,27(6):672-680.

[12] Sharma M,Prabhavalkar KS,Bhatt LK. Elabela peptide:an emerging target in therapeutics[J]. Curr Drug Targets,2022,23(14):1304-1318.

[13] Xu C. The Elabela in hypertension,cardiovascular disease,renal disease,and preeclampsia:an update[J]. J Hypertens,2021,39(1):12-22.

[14] He L,Fu Y,Deng J,et al. Deficiency of FAM3D (family with sequence similarity 3 ,member D),a novel chemokine,attenuates neutrophil recruitment and ameliorates abdominal aortic aneurysm development[J]. Arterioscler Thromb Vasc Biol,2018,38(7):1616-1631.

[15] Dong QT,Ma DD,Gong Q,et al. FAM3 family genes are associated with prognostic value of human cancer:a pan-cancer analysis[J]. Sci Rep,2023,13(1):15144.

[16] Shen Y,Dong Z,Fan F,et al. Targeting cytokine-like protein FAM3D lowers blood pressure in hypertension[J]. Cell Rep Med,2023,4(6):101072.

[17] Yi X,Tran E,Odiba JO,et al. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders:recent advances in the development of small-molecule agonists[J]. Eur J Med Chem,2024,265:115989.

[18] Kaur N,Gare SR,Shen J,et al. Multi-organ FGF21-FGFR1 signaling in metabolic health and disease[J]. Front Cardiovasc Med,2022,9:962561.

[19] Kaur N,Gare SR,Ruiz-Velasco A,et al. FGF21/FGFR1-β-KL cascade in cardiomyocytes modulates angiogenesis and inflammation under metabolic stress[J]. Heliyon,2023,9(4):e14952.

[20] Zhang Y,Liu D,Long XX,et al. The role of FGF21 in the pathogenesis of cardiovascular disease[J]. Chin Med J (Engl),2021,134(24):2931-2943.

[21] Gao Q,Xu L,Cai J. New drug targets for hypertension:a literature review[J]. Biochim Biophys Acta Mol Basis Dis,2021,1867(3):166037.

[22] Yang N,Zhang Y,Huang Y,et al. FGF21 at physiological concentrations regulates vascular endothelial cell function through multiple pathways[J]. Biochim Biophys Acta Mol Basis Dis,2022,1868(12):166558.

[23] Pan X,Shao Y,Wu F,et al. FGF21 prevents angiotensinⅡ-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1-7) axis in mice[J]. Cell Metab,2018,27(6):1323-1337.e5.

[24] Weng HC,Lu XY,Xu YP,et al. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism[J]. Mol Med,2021,27(1):147.

[25] Tan H,Yue T,Chen Z,et al. Targeting FGF21 in cardiovascular and metabolic diseases:from mechanism to medicine[J]. Int J Biol Sci,2023,19(1):66-88.

[26] Liccardo F,Luini A,Di Martino R. Endomembrane-based signaling by GPCRs and G-Proteins[J]. Cells,2022,11(3):528.

[27] Lino CA,Barreto-Chaves ML. Beta-arrestins in the context of cardiovascular diseases:Focusing on angiotensin Ⅱ type 1 receptor (AT1R)[J]. Cell Signal ,2022,92:110253.

[28] Lu S,He X,Yang Z,et al. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design[J]. Nat Commun,2021,12(1):4721.

[29] Cao Y,van der Velden WJC,Namkung Y,et al. Unraveling allostery within the angiotensin Ⅱ type 1 receptor for Gαq and β-arrestin coupling[J]. Sci Signal,2023,16(797):eadf2173.

[30] Casadó-Anguera V,Casadó V. Unmasking allosteric-binding sites:novel targets for GPCR drug discovery[J]. Expert Opin Drug Discov,2022,17(8):897-923.

[31] Fu Y,Huang Y,Yang Z,et al. Cartilage oligomeric matrix protein is an endogenous β-arrestin-2-selective allosteric modulator of AT1 receptor counteracting vascular injury[J]. ?Cell Res,2021,31(7):773-790.

[32] Kashihara T,Kawagishi H,Nakada T,et al. β-arrestin-biased AT1 agonist TRV027 causes a neonatal-specific sustained positive inotropic effect without increasing heart rate[J]. JACC Basic Transl Sci,2020,5(11):1057-1069.

[33] Zhang X,Zhang S,Wang M,et al. Advances in the allostery of angiotensin Ⅱ type 1 receptor[J]. Cell Biosci,2023,13(1):110.

[34] Singh KD,Jara ZP,Harford T,et al. Novel allosteric ligands of the angiotensin receptor AT1R as autoantibody blockers[J]. Proc Natl Acad Sci U S A,2021,118(33):e2019126118.

更新日期/Last Update: 2024-06-28