参考文献/References:
[1] Chiorescu RM,Lazar RD,Ruda A,et al. Current insights and future directions in the treatment of heart failure with preserved ejection fraction[J]. Int J Mol Sci,2023,25(1):440.
[2] Dixon SJ,Lemberg KM,Lamprecht MR,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072.
[3] Masenga SK,Kabwe LS,Chakulya M,et al. Mechanisms of oxidative stress in metabolic syndrome[J]. Int J Mol Sci,2023,24(9):7879.
[4] Ovchinnikov AG,Arefieva TI,Potekhina AV,et al. The molecular and cellular mechanisms associated with a microvascular inflammation in the pathogenesis of heart failure with preserved ejection fraction[J]. Acta Naturae,2020,12(2):40-51.
[5] Liang D,Minikes AM,Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Mol Cell,2022,82(12):2215-2227.
[6] Bebber CM,Müller F,Prieto clemente L,et al. Ferroptosis in cancer cell biology[J]. Cancers (Basel),2020,12(1):164.
[7] Hassannia B,Vandenabeele P,Vanden berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell,2019,35(6):830-849.
[8] Li C,Zhang Y,Liu J,et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J]. Autophagy,2021,17(4):948-960.
[9] Yan B,Ai Y,Sun Q,et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell,2021,81(2):355-369.e10.
[10] Ingold I,Berndt C,Schmitt S,et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell,2018,172(3):409-422.e21.
[11] Flores-romero H,Ros U,García-sáez AJ. A lipid perspective on regulated cell death[J]. Int Rev Cell Mol Biol,2020,351:197-236.
[12] Suzuki S,Venkatesh D,Tanaka T,et al. GLS2 shapes ferroptosis in hepatocellular carcinoma[J]. Oncotarget,2023,14:900-903.
[13] Mishra S,Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol,2021,18(6):400-423.
[14] Ross L,Patel S,Stevens W,et al. The clinical implications of left ventricular diastolic dysfunction in systemic sclerosis[J]. Clin Exp Rheumatol,2022,40(10):1986-1992.
[15] Koutroumpakis E,Kaur R,Taegtmeyer H,et al. Obesity and heart failure with preserved ejection fraction[J]. Heart Fail Clin,2021,17(3):345-56.
[16] Patel RB,Shah SJ,Fonarow GC,et al. Designing future clinical trials in heart failure with preserved ejection fraction:lessons from TOPCAT[J]. Curr Heart Fail Rep,2017,14(4):217-222.
[17] Yano M,Nishino M,Kawanami S,et al. Impact of structural abnormalities in left ventricle and left atrium on clinical outcomes in heart failure with preserved ejection fraction[J]. Int Heart J,2023,64(5):875-884.
[18] Adler J,Gerhardt F,Wissmüller M,et al. Pulmonary hypertension associated with left-sided heart failure[J]. Curr Opin Cardiol,2020,35(6):610-619.
[19] Guazzi M,Ghio S,Adir Y. Pulmonary hypertension in HFpEF?and?HFrEF:JACC review topic of the week[J]. J Am Coll Cardiol,2020,76(9):1102-1111.
[20] van wezenbeek J,Kianzad A,van de bovenkamp A,et al. Right ventricular and right atrial function are less compromised in pulmonary hypertension secondary to heart failure with preserved ejection fraction:a comparison with pulmonary arterial hypertension with similar pressure overload[J]. Circ Heart Fail,2022,15(2):e008726.
[21] Omote K,Sorimachi H,Obokata M,et al. Pulmonary vascular disease in pulmonary hypertension due to left heart disease:pathophysiologic implications[J]. Eur Heart J,2022,43(36):3417-3431.
[22] Melenovsky V,Hwang SJ,Redfield MM,et al. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction[J]. Circ Heart Fail,2015,8(2):295-303.
[23] Kosmala W. Heart?Failure with preserved ejection?fraction and atrial fibrillation:how to fight allied enemies[J]. J Am Coll Cardiol,2020,76(9):1065-1067.
[24] Zhang P,Chamberlain AM,Hodge DO,et al. Outcomes of incident atrial fibrillation in heart failure with preserved or reduced ejection fraction:a community-based study[J]. J Cardiovasc Electrophysiol,2020,31(9):2275-2283.
[25] Hulsmans M,Sager HB,Roh JD,et al. Cardiac macrophages promote diastolic dysfunction[J]. J Exp Med,2018,215(2):423-440.
[26] Bai T,Li M,Liu Y,et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med,2020,160:92-102.
[27] He H,Qiao Y,Zhou Q,et al. Iron overload damages the endothelial mitochondria via the ROS/ADMA/DDAHII/eNOS/NO pathway[J]. Oxid Med Cell Longev,2019,2019:2340392.
[28] Zhao LL,Yang N,Song YQ,et al. Effect of iron overload on endothelial cell calcification and its mechanism[J]. Annals of Translational Medicine,2021,9(22):1658.
[29] Youssef LA,Rebbaa A,Pampou S,et al. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion[J]. Blood,2018,131(23):2581-2593.
[30] Handa P,Thomas S,Morgan-stevenson V,et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol,2019,105(5):1015-1026.
[31] Zhou Y,Que KT,Zhang Z,et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway[J]. Cancer Med,2018,7(8):4012-4022.
[32] Wang J,Deng B,Liu Q,et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J]. Cell Death Dis,2020,11(7):574.
[33] Tan W,Wang Y,Cheng S,et al. AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis[J]. J Adv Res,2024:S2090-1232(24)00077-8.
[34] Lim GB. New mouse model reveals nitrosative stress as a novel driver of HFpEF[J]. Nat Rev Cardiol,2019,16(7):383.
[35] Schiattarella GG,Altamirano F,Kim SY,et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction[J]. Nat Commun,2021,12(1):1684.
[36] Pop C,?tefan MG,Muntean DM,et al. Protective effects of a discontinuous treatment with alpha-lipoic acid in obesity-related heart failure with preserved ejection fraction,in rats[J]. Antioxidants (Basel),2020,9(11):1073.
[37] Kolijn D,Pabel S,Tian Y,et al. Empagliflozin improves endothelial and cardiomyocyte function?in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation[J]. Cardiovasc Res,2021,117(2):495-507.
[38] Quagliariello V,de laurentiis M,Rea D,et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain,reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin[J]. Cardiovasc Diabetol,2021,20(1):150.
[39] Kitakata H,Endo J,Hashimoto S,et al. Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress[J]. Biochem Biophys Res Commun,2021,572:185-190.
[40] Ma S,He LL,Zhang GR,et al. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction[J]. Naunyn Schmiedebergs Arch Pharmacol,2022,395(8):945-962.
[41] Mollace A,Macrì R,Mollace R,et al. Effect of ferric carboxymaltose supplementation in patients with heart failure with preserved ejection fraction:role of attenuated oxidative stress and improved endothelial function[J]. Nutrients,2022,14(23):5057.
[42] Fang X,Cai Z,Wang H,et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis[J]. Circ Res,2020,127(4):486-501.
[43] Zhang Z,Tang J,Song J,et al. Elabela alleviates ferroptosis,myocardial remodeling,fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling[J]. Free Radical Biology and Medicine,2022,181:130-142.
[44] Zhang LL,Chen GH,Tang RJ,et al. Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation[J]. Cardiovasc Drugs Ther,2023?Mar 7. DOI: 10.1007/s10557-023-07441-4.
[45] Zhang ZZ,Wang W,Jin HY,et al. Apelin is a negative regulator of angiotensin Ⅱ-mediated adverse myocardial remodeling and dysfunction[J]. Hypertension,2017,70(6):1165-1175.
[46] Sam F,Duhaney TA,Sato K,et al. Adiponectin deficiency,diastolic dysfunction,and diastolic heart failure[J]. Endocrinology,2010,151(1):322-331.
相似文献/References:
[1]袁明明 赖松青 张泽宇 吴起才.铁死亡在脓毒症心脏功能损伤中的研究进展[J].心血管病学进展,2022,(1):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
YUAN mingmingLAI SongqingZHANG ZeyuWU Qicai.Ferroptosis in Cardiac Function Impairment in Sepsis[J].Advances in Cardiovascular Diseases,2022,(9):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
[2]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(9):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[3]彭可玲 贾晓艳 王华 刘永铭.铁死亡与心力衰竭的研究进展[J].心血管病学进展,2022,(5):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
PENG Keling,JIA Xiaoyan,WANG Hua,et al.Ferroptosis and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(9):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
[4]邵亚兰 马继鹏 卢林鹤 熊祥 马燕燕 刘金成 杨剑.铁死亡与铁自噬在中的研究进展[J].心血管病学进展,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
SHAO Yalan,MA Jipeng,LU Linhe,et al.Ferroptosis and Ferritinophagy in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
[5]孙悦 付松波 李亦兰.心肌细胞铁死亡及其检测方法[J].心血管病学进展,2023,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
SUN Yue,FU Songbo,LI Yilan.Methods for the Detection of Ferroptosis in Cardiomyocytes[J].Advances in Cardiovascular Diseases,2023,(9):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
[6]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(9):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[7]王文杰 杨嘉馨 丁耀东 王可馨 牛佳龙 葛海龙.铁死亡在心血管疾病中的研究进展[J].心血管病学进展,2023,(5):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
WANG Wenjie,YANG Jiaxin,DING Yaodong,et al.Ferroptosis in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(9):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
[8]于永丽 李艳 高奋.铁死亡在血管紧张素Ⅱ诱导的心肌肥大中的作用研究进展[J].心血管病学进展,2023,(12):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
YU Yongli,LI Yan,GAO Fen.Ferroptosis in Angiotensin-Induced Cardiac hypertrophy[J].Advances in Cardiovascular Diseases,2023,(9):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
[9]李心瑶 陈俊 李灼.脓毒症心肌病的发病机制研究进展[J].心血管病学进展,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
LI Xinyao,CHEN Jun,LI Zhuo.Pathogenesis of Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(9):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
[10]赵 珂 陈晓姝 魏希进 张 娟 刘 杨 卞雨敬 袁 杰.铁死亡的调控机制及其在蒽环类药物心脏毒性中的研究进展[J].心血管病学进展,2024,(3):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]
First Clinical Medical College,Shandong University of Traditional Chinese Medicine,Jinan 0000,et al.Regulatory Mechanism of Ferroptosis and Its Progress in Anthracycline-Induced Cardiotoxicity[J].Advances in Cardiovascular Diseases,2024,(9):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]