[1]王一华 蒋玉娇 门冰欣 胡娜娜 张亚苹 张锦.铁死亡在射血分数保留的心力衰竭中的研究进展[J].心血管病学进展,2024,(9):816.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.011]
 WANG Yihua,JIANG Yujiao,MEN Bingxin,et al.Ferroptosis in of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2024,(9):816.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.011]
点击复制

铁死亡在射血分数保留的心力衰竭中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年9期
页码:
816
栏目:
综述
出版日期:
2024-09-25

文章信息/Info

Title:
Ferroptosis in of Heart Failure with Preserved Ejection Fraction
作者:
王一华1 蒋玉娇1 门冰欣1 胡娜娜 1 张亚苹 1 张锦2
(1.兰州大学第一临床医学院,甘肃 兰州 730000;2.兰州大学第一医院心内科,甘肃 兰州 730000)
Author(s):
WANG Yihua1JIANG Yujiao1MEN Bingxin1HU Nana1ZHANG Yaping1ZHANG Jin2
(1.The First Clinical College of Medicine,Lanzhou University,Lanzhou 730000,Gansu,China; 2.Department of Cardiology,The First Hospital of Lanzhou University,Lanzhou 730000,Gansu,China)
关键词:
铁死亡铁超载氧化应激射血分数保留的心力衰竭钠-葡萄糖共转运蛋白2抑制剂
Keywords:
FerroptosisIron overload Oxidative stress Heart failure with preserved ejection fraction Sodium-glucose cotransporter 2 inhibitor
DOI:
10.16806/j.cnki.issn.1004-3934.2024.09.011
摘要:
铁死亡是近年来提出的一种新型细胞死亡方式,是一种铁依赖的、以脂质过氧化物积累为特征的细胞死亡过程,涉及铁代谢、脂质代谢和氨基酸代谢三个过程。细胞内铁超载可通过脂质过氧化、氧化应激、炎症反应等途径对内皮细胞和心肌细胞造成损伤,在射血分数保留的心力衰竭(HFpEF)的病理过程中发挥重要作用。现就HFpEF与铁死亡之间可能存在的相关性进行概述,为进一步研究HFpEF发病机制提供可靠的理论依据,以期为其治疗提供新思路。
Abstract:
Ferroptosis is a new cell death method proposed in recent years. It is an iron-dependent cell death process characterized by lipid peroxide accumulation,involving iron metabolism,lipid metabolism and amino acid metabolism. Intracellular iron overload can cause damage to endothelial cells and cardiomyocytes through lipid peroxidation ,oxidative stress,inflammation and other pathways which plays an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF) . In this paper,the possible correlation between HFpEF and Ferroptosis was summarized,so as to provide a reliable theoretical basis for further research on the pathogenesis of HFpEF and provide new ideas for its treatment

参考文献/References:

[1] Chiorescu RM,Lazar RD,Ruda A,et al. Current insights and future directions in the treatment of heart failure with preserved ejection fraction[J]. Int J Mol Sci,2023,25(1):440.

[2] Dixon SJ,Lemberg KM,Lamprecht MR,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072.

[3] Masenga SK,Kabwe LS,Chakulya M,et al. Mechanisms of oxidative stress in metabolic syndrome[J]. Int J Mol Sci,2023,24(9):7879.

[4] Ovchinnikov AG,Arefieva TI,Potekhina AV,et al. The molecular and cellular mechanisms associated with a microvascular inflammation in the pathogenesis of heart failure with preserved ejection fraction[J]. Acta Naturae,2020,12(2):40-51.

[5] Liang D,Minikes AM,Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Mol Cell,2022,82(12):2215-2227.

[6] Bebber CM,Müller F,Prieto clemente L,et al. Ferroptosis in cancer cell biology[J]. Cancers (Basel),2020,12(1):164.

[7] Hassannia B,Vandenabeele P,Vanden berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell,2019,35(6):830-849.

[8] Li C,Zhang Y,Liu J,et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J]. Autophagy,2021,17(4):948-960.

[9] Yan B,Ai Y,Sun Q,et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell,2021,81(2):355-369.e10.

[10] Ingold I,Berndt C,Schmitt S,et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell,2018,172(3):409-422.e21.

[11] Flores-romero H,Ros U,García-sáez AJ. A lipid perspective on regulated cell death[J]. Int Rev Cell Mol Biol,2020,351:197-236.

[12] Suzuki S,Venkatesh D,Tanaka T,et al. GLS2 shapes ferroptosis in hepatocellular carcinoma[J]. Oncotarget,2023,14:900-903.

[13] Mishra S,Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol,2021,18(6):400-423.

[14] Ross L,Patel S,Stevens W,et al. The clinical implications of left ventricular diastolic dysfunction in systemic sclerosis[J]. Clin Exp Rheumatol,2022,40(10):1986-1992.

[15] Koutroumpakis E,Kaur R,Taegtmeyer H,et al. Obesity and heart failure with preserved ejection fraction[J]. Heart Fail Clin,2021,17(3):345-56.

[16] Patel RB,Shah SJ,Fonarow GC,et al. Designing future clinical trials in heart failure with preserved ejection fraction:lessons from TOPCAT[J]. Curr Heart Fail Rep,2017,14(4):217-222.

[17] Yano M,Nishino M,Kawanami S,et al. Impact of structural abnormalities in left ventricle and left atrium on clinical outcomes in heart failure with preserved ejection fraction[J]. Int Heart J,2023,64(5):875-884.

[18] Adler J,Gerhardt F,Wissmüller M,et al. Pulmonary hypertension associated with left-sided heart failure[J]. Curr Opin Cardiol,2020,35(6):610-619.

[19] Guazzi M,Ghio S,Adir Y. Pulmonary hypertension in HFpEF?and?HFrEF:JACC review topic of the week[J]. J Am Coll Cardiol,2020,76(9):1102-1111.

[20] van wezenbeek J,Kianzad A,van de bovenkamp A,et al. Right ventricular and right atrial function are less compromised in pulmonary hypertension secondary to heart failure with preserved ejection fraction:a comparison with pulmonary arterial hypertension with similar pressure overload[J]. Circ Heart Fail,2022,15(2):e008726.

[21] Omote K,Sorimachi H,Obokata M,et al. Pulmonary vascular disease in pulmonary hypertension due to left heart disease:pathophysiologic implications[J]. Eur Heart J,2022,43(36):3417-3431.

[22] Melenovsky V,Hwang SJ,Redfield MM,et al. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction[J]. Circ Heart Fail,2015,8(2):295-303.

[23] Kosmala W. Heart?Failure with preserved ejection?fraction and atrial fibrillation:how to fight allied enemies[J]. J Am Coll Cardiol,2020,76(9):1065-1067.

[24] Zhang P,Chamberlain AM,Hodge DO,et al. Outcomes of incident atrial fibrillation in heart failure with preserved or reduced ejection fraction:a community-based study[J]. J Cardiovasc Electrophysiol,2020,31(9):2275-2283.

[25] Hulsmans M,Sager HB,Roh JD,et al. Cardiac macrophages promote diastolic dysfunction[J]. J Exp Med,2018,215(2):423-440.

[26] Bai T,Li M,Liu Y,et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med,2020,160:92-102.

[27] He H,Qiao Y,Zhou Q,et al. Iron overload damages the endothelial mitochondria via the ROS/ADMA/DDAHII/eNOS/NO pathway[J]. Oxid Med Cell Longev,2019,2019:2340392.

[28] Zhao LL,Yang N,Song YQ,et al. Effect of iron overload on endothelial cell calcification and its mechanism[J]. Annals of Translational Medicine,2021,9(22):1658.

[29] Youssef LA,Rebbaa A,Pampou S,et al. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion[J]. Blood,2018,131(23):2581-2593.

[30] Handa P,Thomas S,Morgan-stevenson V,et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol,2019,105(5):1015-1026.

[31] Zhou Y,Que KT,Zhang Z,et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway[J]. Cancer Med,2018,7(8):4012-4022.

[32] Wang J,Deng B,Liu Q,et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J]. Cell Death Dis,2020,11(7):574.

[33] Tan W,Wang Y,Cheng S,et al. AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis[J]. J Adv Res,2024:S2090-1232(24)00077-8.

[34] Lim GB. New mouse model reveals nitrosative stress as a novel driver of HFpEF[J]. Nat Rev Cardiol,2019,16(7):383.

[35] Schiattarella GG,Altamirano F,Kim SY,et al. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction[J]. Nat Commun,2021,12(1):1684.

[36] Pop C,?tefan MG,Muntean DM,et al. Protective effects of a discontinuous treatment with alpha-lipoic acid in obesity-related heart failure with preserved ejection fraction,in rats[J]. Antioxidants (Basel),2020,9(11):1073.

[37] Kolijn D,Pabel S,Tian Y,et al. Empagliflozin improves endothelial and cardiomyocyte function?in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation[J]. Cardiovasc Res,2021,117(2):495-507.

[38] Quagliariello V,de laurentiis M,Rea D,et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain,reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin[J]. Cardiovasc Diabetol,2021,20(1):150.

[39] Kitakata H,Endo J,Hashimoto S,et al. Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress[J]. Biochem Biophys Res Commun,2021,572:185-190.

[40] Ma S,He LL,Zhang GR,et al. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction[J]. Naunyn Schmiedebergs Arch Pharmacol,2022,395(8):945-962.

[41] Mollace A,Macrì R,Mollace R,et al. Effect of ferric carboxymaltose supplementation in patients with heart failure with preserved ejection fraction:role of attenuated oxidative stress and improved endothelial function[J]. Nutrients,2022,14(23):5057.

[42] Fang X,Cai Z,Wang H,et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis[J]. Circ Res,2020,127(4):486-501.

[43] Zhang Z,Tang J,Song J,et al. Elabela alleviates ferroptosis,myocardial remodeling,fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling[J]. Free Radical Biology and Medicine,2022,181:130-142.

[44] Zhang LL,Chen GH,Tang RJ,et al. Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation[J]. Cardiovasc Drugs Ther,2023?Mar 7. DOI: 10.1007/s10557-023-07441-4.

[45] Zhang ZZ,Wang W,Jin HY,et al. Apelin is a negative regulator of angiotensin Ⅱ-mediated adverse myocardial remodeling and dysfunction[J]. Hypertension,2017,70(6):1165-1175.

[46] Sam F,Duhaney TA,Sato K,et al. Adiponectin deficiency,diastolic dysfunction,and diastolic heart failure[J]. Endocrinology,2010,151(1):322-331.

相似文献/References:

[1]袁明明 赖松青 张泽宇 吴起才.铁死亡在脓毒症心脏功能损伤中的研究进展[J].心血管病学进展,2022,(1):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
 YUAN mingmingLAI SongqingZHANG ZeyuWU Qicai.Ferroptosis in Cardiac Function Impairment in Sepsis[J].Advances in Cardiovascular Diseases,2022,(9):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
[2]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
 PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(9):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[3]彭可玲 贾晓艳 王华 刘永铭.铁死亡与心力衰竭的研究进展[J].心血管病学进展,2022,(5):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
 PENG Keling,JIA Xiaoyan,WANG Hua,et al.Ferroptosis and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(9):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
[4]邵亚兰 马继鹏 卢林鹤 熊祥 马燕燕 刘金成 杨剑.铁死亡与铁自噬在中的研究进展[J].心血管病学进展,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
 SHAO Yalan,MA Jipeng,LU Linhe,et al.Ferroptosis and Ferritinophagy in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
[5]孙悦 付松波 李亦兰.心肌细胞铁死亡及其检测方法[J].心血管病学进展,2023,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
 SUN Yue,FU Songbo,LI Yilan.Methods for the Detection of Ferroptosis in Cardiomyocytes[J].Advances in Cardiovascular Diseases,2023,(9):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
[6]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
 YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(9):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[7]王文杰 杨嘉馨 丁耀东 王可馨 牛佳龙 葛海龙.铁死亡在心血管疾病中的研究进展[J].心血管病学进展,2023,(5):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
 WANG Wenjie,YANG Jiaxin,DING Yaodong,et al.Ferroptosis in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(9):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
[8]于永丽 李艳 高奋.铁死亡在血管紧张素Ⅱ诱导的心肌肥大中的作用研究进展[J].心血管病学进展,2023,(12):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
 YU Yongli,LI Yan,GAO Fen.Ferroptosis in Angiotensin-Induced Cardiac hypertrophy[J].Advances in Cardiovascular Diseases,2023,(9):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
[9]李心瑶 陈俊 李灼.脓毒症心肌病的发病机制研究进展[J].心血管病学进展,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 LI Xinyao,CHEN Jun,LI Zhuo.Pathogenesis of Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(9):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
[10]赵 珂 陈晓姝 魏希进 张 娟 刘 杨 卞雨敬 袁 杰.铁死亡的调控机制及其在蒽环类药物心脏毒性中的研究进展[J].心血管病学进展,2024,(3):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]
 First Clinical Medical College,Shandong University of Traditional Chinese Medicine,Jinan 0000,et al.Regulatory Mechanism of Ferroptosis and Its Progress in Anthracycline-Induced Cardiotoxicity[J].Advances in Cardiovascular Diseases,2024,(9):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]

更新日期/Last Update: 2024-10-17