[1]张诗琴 刘子奇 李彬 贺轶宇 蒋学俊.运动调节炎症反应改善心肌梗死后心脏重构[J].心血管病学进展,2024,(8):757.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.018]
 ZHANG Shiqin,LIU Ziqi,LI Bin,et al.Exercise Modulates Inflammation to Improve Post-Infarction Cardiac Remodeling[J].Advances in Cardiovascular Diseases,2024,(8):757.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.018]
点击复制

运动调节炎症反应改善心肌梗死后心脏重构()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年8期
页码:
757
栏目:
论著
出版日期:
2024-08-25

文章信息/Info

Title:
Exercise Modulates Inflammation to Improve Post-Infarction Cardiac Remodeling
作者:
张诗琴 刘子奇 李彬 贺轶宇 蒋学俊
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,武汉 湖北 430060)
Author(s):
ZHANG ShiqinLIU ZiqiLI BinHEYiyuJIANG Xuejun
(Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China)
关键词:
心肌梗死炎症运动
Keywords:
Myocardial infarction Inflammation Exercise
DOI:
10.16806/j.cnki.issn.1004-3934.2024.08.018
摘要:
目的 探讨运动对心肌梗死(MI)诱发大鼠心脏重构的影响及相关机制。 方法 对成年雄性Sprague-Dawley大鼠进行冠状动脉左前降支结扎,建立MI模型。动物被分为三组:对照组(sham组)、MI -久坐组(MI-Sed组)和MI-运动组(MI-Ex组)。MI-Ex组大鼠在MI手术后1周开始运动训练,为期4周,每周运动6 d 。运动干预结束后,对各组大鼠进行研究。超声心动图用于评估心脏结构和功能。组织学分析用于评估纤维化和肥厚等病理变化。用Western blotting评估NOD样受体热蛋白结构域相关蛋白(NLRP3)相关炎症因子水平。结果 MI大鼠表现出心脏结构和功能异常、心脏肥大和心肌间质纤维化,并伴有较高的NLRP3炎症小体表达。运动 4周后,随着NLRP3炎症小体的抑制,MI大鼠的心脏功能得到改善,心肌肥厚和心肌间质纤维化减轻。结论 NLRP3炎症小体在MI诱导的心脏 重构模型中被激活。运动可改善心脏功能,其机制与NLRP3炎症小体活化的减弱有关。
Abstract:
Objective To explore effects of exercise on myocardial infarction(MI)-induced cardiac remodelling and the related mechanisms in rats. Methods Adult male Sprague-Dawley rats underwent the left anterior descending coronary artery ligation to generate MI model . The animals were divided into three groups: sham group, MI -sedentariness(MI-Sed) group, MI -exercise(MI-Ex) group. Rats in the MI -Ex group started exercise training 1 week after the MI surgery and lasted for a period of 4 weeks, with 6 days of exercise per week. Rats in all groups were studied at the end of the exercise intervention. Echocardiography was used to evaluate cardiac structure and function. Histological analysis was used to assess pathological changes such as fibrosis and hypertrophy. Western blotting was used to evaluate NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome. Results MI rats exhibited abnormal cardiac structure and function, cardiac hypertrophy, and myocardial interstitial fibrosis, accompanied by higher NLRP3 inflammasome expression. 4 weeks after exercise, cardiac function was improved in MI rats, cardiac hypertrophy and myocardial interstitial fibrosis was attenuated, with NLRP3 inflammasome inhibition. Conclusion NLRP3 inflammasome was activated in MI-induced cardiac remodelling model. Exercise improved cardiac function, the mechanisms accompanied by attenuation NLRP3 inflammasome activation.

参考文献/References:

[1] Reed GW,Rossi JE,Cannon CP. Acute myocardial infarction [J].?Lancet,2017,389(10065):F197-F210.

[2] Yap J,Irei J,Lozano-Gerona J,et al. Macrophages in cardiac remodelling after myocardial infarction[J]. Nat Rev Cardiol,2023,20(6):F373-F385.

[3] Wu X,Reboll MR,Korf-Klingebiel M,et al. Angiogenesis after acute myocardial infarction[J]. Cardiovasc Res,2021,117(5):F1257-F1273.

[4] Viola M,de Jager SCA,Sluijter JPG. Targeting inflammation after myocardial infarction: a therapeutic opportunity for extracellular vesicles[J]? Int J Mol Sci,2021,22(15):7831.

[5] Kelley N,Jeltema D,Duan Y,et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci,2019,20(13):3328.

[6] Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8):F477-F489.

[7] Grebe A,Hoss F,Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis[J]. Circ Res,2018,122(12):F1722-F1740.

[8] Toldo S,Mezzaroma E,Buckley LF,et al. Targeting the NLRP3 inflammasome in cardiovascular diseases[J]. Pharmacol Ther,2022,236:108053.

[9] Ma Y,Kuang Y,Bo W,et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction[J]. Int J Mol Sci,2021,22(22):12341.

[9] Bo W,Ma Y,Xi Y,et al. The roles of FGF21 and ALCAT1 in aerobic exercise-induced cardioprotection of postmyocardial infarction mice[J]. Oxid Med Cell Longev,2021,2021:8996482.

[10] Veiga ECA,Melo BL,Vieira SS,et al. Prior exercise training and experimental myocardial infarction:a systematic review and meta-analysis[J]. Clinics (Sao Paulo),2020,75:e1293.

[11] Monteiro-Junior RS,de Tarso Maciel-Pinheiro P,da Matta Mello Portugal E,et al. Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses[J]. J Phys Act Health,2018,15(1):F64-F71.

[12] Pedersen LR,Olsen RH,Anholm C,et al. Effects of 1?year of exercise training versus combined exercise training and weight loss on body composition,low-grade inflammation and lipids in overweight patients with coronary artery disease: a randomized trial[J].?Cardiovasc Diabetol,2019,18(1):127.

[13] Sun Y,Ding S. NLRP3 inflammasome in diabetic cardiomyopathy and exercise intervention[J]. Int J Mol Sci,2021,22(24):13228.

[14] Li B,Xu L,Liu J,et al. Phloretin ameliorates heart function after myocardial infarction via NLRP3/Caspase-1/IL-1β signaling[J]. Biomed Pharmacother,2023,165:115083.

[15] Najafipour H,Rostamzadeh F,Yeganeh-Hajahmadi M,et al. Improvement of cardiac function in rats with myocardial infarction by low-intensity to moderate-intensity endurance exercise is associated with normalization of klotho and SIRT1[J]. J Cardiovasc Pharmacol,2021,77(1):F79-F86.

[16] Prabhu SD,Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res,2016,119(1):F91-F112.

[17] Wang X,Guo Z,Ding Z,et al. Inflammation,autophagy,and apoptosis after myocardial infarction[J]. J Am Heart Assoc,2018,7(9):e008024.

[18] Naderi N,Hemmatinafar M,Gaeini AA,et al. High-intensity interval training increase GATA4,CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction[J]. Life Sci,2019,221:F319-F326.

[19] Wu G,Guo Y,Li M,et al. Exercise enhances branched-chain amino acid catabolism and decreases cardiac vulnerability to myocardial ischemic injury[J]. Cells,2022,11(10):1706.

[20] Zhang YM,Lu Y,Tang Y,et al. The effects of different initiation time of exercise training on left ventricular remodeling and cardiopulmonary rehabilitation in patients with left ventricular dysfunction after myocardial infarction[J]. Disabil Rehabil,2016,38(3):F268-F276.

[21] Powers SK,Sollanek KJ,Wiggs MP,et al. Exercise-induced improvements in myocardial antioxidant capacity: the antioxidant players and cardioprotection[J]. Free Radic Res,2014,48(1):F43-F51.

[22] Chen H,Chen C,Spanos M,et al. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics[J]. Signal Transduct Target Ther,2022,7(1):306.

[23] Wang H,Xie Y,Guan L,et al. Targets identified from exercised heart:killing multiple birds with one stone[J]. NPJ Regen Med,2021,6(1):23.

[24] Liao Z,Li D,Chen Y,et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats[J]. J Cell Mol Med,2019,23(12):F8328-F8342.

[25] Boon RA,Dimmeler S. MicroRNAs in myocardial infarction[J]. Nat Rev Cardiol,2015,12(3):F135-F142.

[26] Puhl SL,Müller A,Wagner M,et al. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice[J]. Am J Physiol Heart Circ Physiol,2015,309(2):F345-F359.

[27] Feng L,Li B,Cai M,et al. Resistance exercise alleviates the prefrontal lobe injury and dysfunction by activating SESN2/AMPK/PGC-1α signaling pathway and inhibiting oxidative stress and inflammation in mice with myocardial infarction[J]. Exp Neurol,2023,370:114559.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(8):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]胥雪莲,何川.炎症与动脉粥样硬化[J].心血管病学进展,2015,(5):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
 XU Xuelian,HE Chuan.Inflammation and Atherosclerosis[J].Advances in Cardiovascular Diseases,2015,(8):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
[3]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(8):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[4]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[5]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[6]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
 SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(8):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
[9]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(8):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[10]顾佳仪 刘正霞 鲁翔.白介素-1β在冠心病中的研究进展[J].心血管病学进展,2020,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.006]
 Gu Jiayi,Liu Zhengxia,Lu Xiang.Interleukin-1 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(8):125.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.006]
[11]岳田 黄刚 杨佳丽 何健 旦增顿珠 高寒 秦珊珊 侯君 徐俊波.姜黄素纳米颗粒联合可注射水凝胶用于改善心肌梗死后微环境的体外效果评价研究[J].心血管病学进展,2024,(2):187.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.018]
 YUE Tian,HUANG Gang,YANG Jiali,et al.Evaluation Study of the in Vitro Effect of Curcumin Nanopartrticle Combined with Injectable Hydrogel for Improving the Microenvironment after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2024,(8):187.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.018]

更新日期/Last Update: 2024-09-13