[1]鄢文婷 黄愿 王刚 李燕玲 谢萍.线粒体功能障碍与放射性心脏损伤的研究进展[J].心血管病学进展,2024,(6):557.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.018]
 YAN Wenting,HUANG Yuan,WANG Gang,et al.Mitochondrial Dysfunction and Radiation -Induced Heart Disease[J].Advances in Cardiovascular Diseases,2024,(6):557.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.018]
点击复制

线粒体功能障碍与放射性心脏损伤的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年6期
页码:
557
栏目:
综述
出版日期:
2024-06-25

文章信息/Info

Title:
Mitochondrial Dysfunction and Radiation -Induced Heart Disease
作者:
鄢文婷1 黄愿1 王刚2 李燕玲3 谢萍3
(1. 甘肃中医药大学第一临床医学院,甘肃 兰州 730000 ;2. 兰州大学第一临床医学院,甘肃 兰州 730000 ;3. 甘肃省人民医院心内科,甘肃 兰州 730000 )
Author(s):
YAN Wenting1HUANG Yuan1WANG Gang2LI Yanling3XIE Ping3
(1. The First Clinical Medical College of Gansu University of Chinese Medicine,Lanzhou 730000,Gansu,China; 2. The First Clinical Medical College of Lanzhou University,Lanzhou 734000,Gansu,China; 3. Department of Cardiology,Gansu Provincial Hospital,Lanzhou 730000,Gansu,China)
关键词:
放射性心脏损伤线粒体功能线粒体基因组线粒体动力学线粒体自噬
Keywords:
radiation-induced heart disease Mitochondria function Mitochondrial genome Mitochondrial dynamics Mitophagy
DOI:
10.16806/j.cnki.issn.1004-3934.2024.06.018
摘要:
放射性心脏损伤(RIHD)是放射引起的一系列心血管并发症的统称,其临床主要表现有冠状动脉疾病、心肌病变、瓣膜病、心包炎、心包积液以及心律失常等。目前认为,线粒体功能障碍是RIHD的主要机制之一。心肌细胞含有大量线粒体,在辐射刺激下,线粒体基因、线粒体膜、氧化呼吸链、线粒体动力学等均发生不同程度的功能变化,可以影响心肌细胞的结局。现就RIHD过程中线粒体功能变化研究进行综述。
Abstract:
Radiation-induced heart disease (RIHD) is a collective term for a range of radiation-induced cardiovascular complications that manifest clinically as coronary artery disease,cardiomyopathy,valvular disease,pericarditis,pericardial effusions and arrhythmias etc. At present ,it is accepted that mitochondrial dysfunction is one of the main mechanisms of RIHD. Cardiomyocytes contain a large number of mitochondria,and in response to radiation stimulation,mitochondrial genes,mitochondrial membranes,oxidative respiratory chain,and mitochondrial dynamics all undergo variable degrees of functional changes that can affect cardiomyocyte outcome. In this paper,we review the research on mitochondrial dysfunction mechanisms in RIHD as follows.

参考文献/References:

[1] Abravan A,Price G,Banfill K,et al. Role of real-world data in assessing cardiac toxicity after lung cancer radiotherapy[J]. Front Oncol,2022,12:934369.

[2] 李廷翠,崔鸣,朱丹. 放射性心脏损伤的研究进展[J]. 心血管病学进展,2021,42(9):769-772.

[3] Vallerio P,Maloberti A,Palazzini M,et al. Thoracic radiotherapy as a risk factor for heart ischemia in subjects treated with chest irradiation and chemotherapy and without classic cardiovascular RISK factors[J]. Radiother Oncol,2020,152:146-150.

[4] Shimura T,Kobayashi J,Komatsu K,et al. Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells[J]. Cell Cycle,2016,15(8):1099-1107.

[5] Akbari M,Nilsen HL,Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription[J]. Front Cell Dev Biol,2022,10:984245.

[6] Koller A,Lamina C,Brandl C,et al. Systemic evidence for mitochondrial dysfunction in age-related macular degeneration as revealed by mtDNA copy number measurements in peripheral blood[J]. Int J Mol Sci,2023,24(22):16406.

[7] Siqueira RG,Silva DA,Melo LD,et al. Common deletion (CD) in mitochondrial DNA of irradiated rat heart[J]. An Acad Bras Cienc,2014,86(2):685-694.

[8] Schlaak RA,Frei A,Schottstaedt AM,et al. Mapping genetic modifiers of radiation-induced cardiotoxicity to rat chromosome 3[J]. Am J Physiol Heart Circ Physiol,2019,316(6):H1267-H1280.

[9] Abdullaev S,Gubina N,Bulanova T,et al. Assessment of nuclear and mitochondrial DNA,expression of mitochondria-related genes in different brain regions in rats after whole-body X-ray irradiation[J]. Int J Mol Sci,2020,21(4):1196.

[10] Pohjoism?ki JLO,Goffart S. Adaptive and pathological outcomes of radiation stress-induced redox signaling[J]. Antioxid Redox Signal,2022,37(4-6):336-348.

[11] Oberley LW,St Clair DK,Autor AP,et al. Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation[J]. Arch Biochem Biophys,1987,254(1):69-80.

[12] Akashi M,Hachiya M,Paquette RL,et al. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation[J]. J Biol Chem,1995,270(26):15864-15869.

[13] Greenberger JS,Mukherjee A,Epperly MW. Gene therapy for systemic or organ specific delivery of manganese superoxide dismutase[J]. Antioxidants (Basel),2021,10(7):1057.

[14] Karwi QG,J?rg AR,Lopaschuk GD. Allosteric,transcriptional and post-translational control of mitochondrial energy metabolism[J]. Biochem J,2019,476(12):1695-1712.

[15] Lamartine J,Franco N,Le Minter P,et al. Activation of an energy providing response in human keratinocytes after gamma irradiation[J]. J Cell Biochem,2005,95(3):620-631.

[16] Azimzadeh O,Scherthan H,Sarioglu H,et al. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation[J]. Proteomics,2011,11(16):3299-3311.

[17] Xu P,Yi Y,Luo Y,et al. Radiation-induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues[J]. Mol Med Rep,2021,24(6):842.

[18] Pearce LL,Epperly MW,Greenberger JS,et al. Identification of respiratory complexesⅠand Ⅲ as mitochondrial sites of damage following exposure to ionizing radiation and nitric oxide[J]. Nitric Oxide,2001,5(2):128-136.

[19] Barjaktarovic Z,Schmaltz D,Shyla A,et al. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays[J]. PLoS One,2011,6(12):e27811.

[20] Bhullar SK,Dhalla NS. Status of mitochondrial oxidative phosphorylation during the development of heart failure[J]. Antioxidants (Basel),2023,12(11):1941.

[21] Chen W,Zhao H,Li Y. Mitochondrial dynamics in health and disease:mechanisms and potential targets[J]. Signal Transduct Target Ther,2023,8(1):333.

[22] Bo T,Yamamori T,Yamamoto K,et al. Mitochondrial fission promotes radiation-induced increase in intracellular Ca2+ level leading to mitotic catastrophe in mouse breast cancer EMT6 cells [J]. Biochem Biophys Res Commun,2020,522(1):144-150.

[23] Kobashigawa S,Kashino G,Suzuki K,et al. Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells[J]. Radiat Res,2015,183(4):455-464.

[24] Kuznetsov AV,Hermann M,Saks V,et al. The cell-type specificity of mitochondrial dynamics[J]. Int J Biochem Cell Biol,2009,41(10):1928-1939.

[25] von der Malsburg A,Sapp GM,Zuccaro KE,et al. Structural mechanism of mitochondrial membrane remodelling by human OPA1[J]. Nature,2023,620(7976):1101-1108.

[26] Nichtová Z,Fernandez-Sanz C,de la Fuente S,et al. Enhanced mitochondria-SR tethering triggers adaptive cardiac muscle remodeling[J]. Circ Res,2023,132(11):e171-e187.

[27] Gao A,Zou J,Mao Z,et al. SUMO2-mediated SUMOylation of SH3GLB1 promotes ionizing radiation-induced hypertrophic cardiomyopathy through mitophagy activation[J]. Eur J Pharmacol,2022,924:174980.

[28] Yu L,Yang X,Li X,et al. Pink1/PARK2/mROS-dependent mitophagy initiates the sensitization of cancer cells to radiation[J]. Oxid Med Cell Longev,2021,2021:5595652.

[29] Yang P,Luo X,Li J,et al. Ionizing radiation upregulates glutamine metabolism and induces cell death via accumulation of reactive oxygen species[J]. Oxid Med Cell Longev,2021,2021:5826932.

[30] Dan X,Babbar M,Moore A,et al. DNA damage invokes mitophagy through a pathway involving Spata18[J]. Nucleic Acids Res,2020,48(12):6611-6623.

[31] Yi J,Yue L,Zhang Y,et al. PTPMT1 protects cardiomyocytes from necroptosis induced by γ-ray irradiation through alleviating mitochondria injury[J]. Am J Physiol Cell Physiol,2023,324(6):C1320-C1331.

[32] Bao X,Liu X,Wu Q,et al. Mitochondrial-targeted antioxidant MitoQ-mediated autophagy:a novel strategy for precise radiation protection[J]. Antioxidants (Basel),2023,12(2):453.

[33] Epperly MW,Sacher JR,Krainz T,et al. Effectiveness of analogs of the GS-nitroxide,JP4-039,as total body irradiation mitigators[J]. In Vivo,2017,31(1):39-43.

[34] Huang Y,Cheng M,Wang X,et al. Dang Gui Bu Xue Tang,a conventional Chinese herb decoction,

ameliorates radiation-induced heart disease via Nrf2/HMGB1 pathway [J]. Front Pharmacol,2022,13:1086206.

[35] Fan Z,Han Y,Ye Y,et al. l-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signalling in hearts exposed to irradiation[J]. Eur J Pharmacol,2017,804:7-12.

[36] Cui WW,Ye C,Wang KX,et al. Momordica. charantia—Derived extracellular vesicles-like nanovesicles protect cardiomyocytes against radiation injury via attenuating DNA damage and mitochondria dysfunction[J]. Front Cardiovasc Med,2022,9:864188.

[37] Yang X,Jiang J,Li Z,et al. Strategies for mitochondrial gene editing[J]. Comput Struct Biotechnol J,2021,19:3319-3329.

[38] Kim JS,Lee S,Kim WK,et al. Mitochondrial transplantation:an overview of a promising therapeutic approach[J]. BMB Rep,2023,56(9):488-495.

[39] Xhuti D,Rebalka IA,Minhas M,et al. The acute effect of multi-ingredient antioxidant supplementation following ionizing radiation[J]. Nutrients,2023,15(1):207.

[40] Jung AY,Cai X,Thoene K,et al. Antioxidant supplementation and breast cancer prognosis in postmenopausal women undergoing chemotherapy and radiation therapy[J]. Am J Clin Nutr,2019,109(1):69-78.

相似文献/References:

[1]李廷翠 崔鸣 朱丹.放射性心脏损伤的研究进展[J].心血管病学进展,2021,(9):769.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 LI Tingcui,CUI Ming,ZHU Dan.Radiation-Induced Heart Disease[J].Advances in Cardiovascular Diseases,2021,(6):769.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[2]王雪梅 王怡婷 曹莹 汪洁英 李婧 门可.线粒体功能调控动脉粥样硬化的研究进展[J].心血管病学进展,2022,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.012]
 WANG Xuemei,WANG Yiting,CAO Ying,et al.Atherosclerosis Mediated by Mitochondrial Function[J].Advances in Cardiovascular Diseases,2022,(6):1016.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.012]
[3]瞿珊珊?黄蓉蓉 闫军宇 李玉兰.线粒体功能障碍与平滑肌细胞表型转化的研究[J].心血管病学进展,2023,(4):360.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.016]
 QU ShanshanHUANG RongrongYAN JunyuLI Yulan.Mitochondrial Functional Proteins Regulate Smooth Muscle Cell Phenotypic Transition and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(6):360.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.016]

更新日期/Last Update: 2024-07-26