参考文献/References:
[1] Abdollahi E,Keyhanfar F,Delbandi AA,et al. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages[J]. Eur J Pharmacol,2022,918:174715.[2] Arab HH,Safar MM,Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced parkinson’s disease rat model[J]. ACS Chem Neurosci,2021,12(4):689-703.[3] Arab HH,Al-Shorbagy MY,Saad MA. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats:targeting AMPK/mTOR,HMGB1/RAGE and Nrf2/HO-1 pathways[J]. Chem Biol Interact,2021,335:109368.[4] Dasari D,Bhat A,Mangali S,et al. Canagliflozin and dapagliflozin attenuate glucolipotoxicity-induced oxidative stress and apoptosis in cardiomyocytes via inhibition of sodium-glucose cotransporter-1[J]. ACS Pharmacol Transl Sci,2022,5(4):216-225.[5] El-Sherbiny M,El-Shafey M,Said E,et al. Dapagliflozin,liraglutide,and their combination attenuate diabetes mellitus-associated hepato-renal injury-insight into oxidative injury/inflammation/apoptosis modulation[J]. Life (Basel),2022,12(5):764.[6] Frangogiannis NG,Rosenzweig A. Regulation of the inflammatory response in cardiac repair[J]. Circ Res,2012,110(1):159-173.[7] Frangogiannis NG. The inflammatory response in myocardial injury,repair,and remodelling[J]. Nat Rev Cardiol,2014,11(5):255-265.[8] Gulati R,Behfar A,Narula J,et al. Acute myocardial infarction in young individuals[J]. Mayo Clinic Proceedings,2020,95(1):136-156.[9] Hsieh PL,Chu PM,Cheng HC,et al. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress,cardiac remodeling,and inflammation[J]. Int J Mol Sci,2022,23(17):10146.[10] Kologrivova I,Shtatolkina M,Suslova T,et al. Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol,2021,12:664457.[11] Kubota A,Frangogiannis NG. Macrophages in myocardial infarction[J]. Am J Physiol Cell Physiol,2022,323(4):C1304-C1324.[12] Li M,Zheng H,Han Y,et al. LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction[J]. Theranostics,2021,11(19):9397-9414.[13] Lim V G,Bell R M,Arjun S,et al. Sglt2 inhibitor,canagliflozin,attenuates?yocardial infarction in the?iabetic?nd nondiabetic heart[J]. JACC:Basic to Translational Science,2019,4(1):15-26.[14] Ma L,Zou R,Shi W,et al. Sglt2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the xo-serca2-camkii-coffilin pathways[J]. Theranostics,2022,12(11):5034-5050.[15] Neal B,Perkovic V,Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(21):2099.[16] Ong SB,Hernandez-Resendiz S,Crespo-Avilan GE,et al. Inflammation following acute myocardial infarction:multiple players,dynamic roles,and novel therapeutic opportunities[J]. Pharmacol Ther,2018,186:73-87.[17] R?holm K,Figtree G,Perkovic V,et al. Canagliflozin and heart failure in type 2 diabetes mellitus:results from the canvas program[J]. Circulation,2018,138(5):458-468.[18] Sarraju A,Li J,Cannon C P,et al. Effects of canagliflozin on cardiovascular,renal,and safety outcomes in participants with type 2 diabetes and chronic kidney disease according to history of heart failure:results from the credence trial[J]. Am Heart J,2021,233:141-148.[19] Spertus JA,Birmingham MC,Nassif M,et al. The SGLT2 inhibitor canagliflozin in heart failure:the CHIEF-HF remote, patient-centered randomized trial[J]. Nat Med,2022,28(4):809-813.[20] Zhang Q,Wang L,Wang S,et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther,2022,7(1):78.[21] Zinman B,Wanner C,Lachin JM,et al. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med,2015,373(22):2117-2128.[22] Zuo Q,Zhang G,He L,et al. Canagliflozin attenuates hepatic steatosis and atherosclerosis progression in western diet-fed apoe-knockout mice[J]. Drug Des Devel Ther,2022,16:4161-4177.
相似文献/References:
[1]王山山 梁兆光.炎症反应与心房颤动的关系[J].心血管病学进展,2019,(5):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
WANG Shanshan,LIANG Zhaoguang.Inflammation and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(4):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
[2]李文松 张润峰.脂蛋白相关磷脂酶与冠心病的相关性研究进展[J].心血管病学进展,2020,(1):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
LI Wensong ZHANG Runfeng.Lipoprotein-associated Phospholipase A2 and Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(4):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(4):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(4):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[5]王菲 卢新政.卡格列净对2型糖尿病患者心血管保护作用的研究进展[J].心血管病学进展,2020,(3):231.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.004]
WANG Fei,LU Xinzheng.Cardiovascular Protection of Canagliflozin in Type 2 Diabetes Patients[J].Advances in Cardiovascular Diseases,2020,(4):231.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.004]
[6]李德霞 李琳.白介素-1β与心力衰竭的研究进展[J].心血管病学进展,2020,(6):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
LI Dexia LI Lin.Interleukin-1 and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(4):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
[7]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(4):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
[8]肖秋蓓 王志维.急性主动脉夹层并发急性肺损伤研究进展[J].心血管病学进展,2020,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
XIAO QiubeiWANG Zhiwei.Acute Aortic Dissection Complicated with Acute Lung Injury[J].Advances in Cardiovascular Diseases,2020,(4):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
[9]蔡一帆 董倩 俞坤武 曾秋棠.炎症细胞参与腹主动脉瘤的研究进展[J].心血管病学进展,2022,(7):630.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
CAI Yifan,Dong Qian,YU Kunwu,et al.Pathogenesis of Inflammatory Cell in Abdominal Aortic Aneurysm[J].Advances in Cardiovascular Diseases,2022,(4):630.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[10]张国贤 彭瑜 张钲.冠状动脉内皮细胞线粒体损伤在心肌梗死中的研究进展[J].心血管病学进展,2023,(3):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]
ZHANG Guoxian,PENG Yu,ZHANG Zheng.Mitochondrial Injury of Coronary Endothelial Cells in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(4):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]