[1]黄爱宝??少衡.巨噬细胞治疗缺血心肌的研究进展[J].心血管病学进展,2024,(6):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]
 HUANG Aibao,ZHANG Shaoheng?/html>.Research progress in Macrophage Therapy for?schemic Myocardium[J].Advances in Cardiovascular Diseases,2024,(6):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]
点击复制

巨噬细胞治疗缺血心肌的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年6期
页码:
543
栏目:
综述
出版日期:
2024-06-25

文章信息/Info

Title:
Research progress in Macrophage Therapy for?schemic Myocardium
作者:
黄爱宝??少衡
(暨南大学附属广州红十字会医院,广东 广州 510000)
Author(s):
HUANG AibaoZHANG Shaoheng?/html>
?Guangzhou Red Cross Hospital of Jinan University,Guangzhou 510000,Guangdong,China)
关键词:
心肌梗死巨噬细胞细胞治疗
Keywords:
Myocardial infarctionMacrophageCell therapy
DOI:
10.16806/j.cnki.issn.1004-3934.2024.06.015
摘要:
心血管疾病是全球主要死因,而M2巨噬细胞在心血管疾病中起着主导作用。了解M2巨噬细胞的作用机制有助于制定相应的治疗策略。M2巨噬细胞具有消除炎症和修复心肌的能力,在心肌梗死后,减少梗死灶的大小,减少梗死后的纤维化,改善心肌重构。许多研究发现,通过调节细胞间的通信、巨噬细胞相关基因和蛋白的表达,以及药物靶向作用,M2巨噬细胞在心肌梗死中的炎症调节作用可得到增强,从而进一步改善心肌修复,减少心肌梗死后并发症的发生。现重点综述M2巨噬细胞在缺血性心肌治疗中的进展。
Abstract:
Cardiovascular disease is the leading cause of death worldwide,and M2 macrophages plays a dominant role in cardiovascular diseases. Understanding the mechanisms of M2 macrophages is beneficial for developing corresponding treatment strategies. M2 macrophages have the ability to eliminate inflammation and repair the myocardium after myocardial infarction,reducing infarct size,fibrosis after infarction,and improving myocardial remodeling. Many studies have found that the inflammatory regulation role of M2 macrophages in myocardial infarction can be enhanced by regulating cell communication,the expression of macrophage-related genes and proteins,as well as drug targeting,which could further improve myocardial repair and reduce the occurrence of complications after myocardial infarction. This review focused on the progress of M2 macrophages in the treatment of ischemic myocardium

参考文献/References:

[1] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases

and injuries in 204 countries and territories,1990—2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet,2020,396(10258):1204-1222.

[2] Weissman D,Maack C. Mitochondrial function in macrophages controls cardiac repair after myocardial infarction[J]. J Clin Invest,2023,133(4):e167079.

[3] Zhang Z,Tang J,Cui X,et al. New insights and novel therapeutic potentials for

macrophages in myocardial infarction[J]. Inflammation,2021,44(5):1696-1712.

[4] Chen R,Zhang S,Liu F,et al. Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1[J]. Acta Pharm Sin B,2023,13(1):128-141.

[5] Kologrivova I,Shtatolkina M,Suslova T,et al. Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol,2021,12:664457.

[6] Li L,Cao J,Li S,et al. M2 macrophage-derived sEV regulate pro-inflammatory CCR2 + macrophage subpopulations to favor post-AMI cardiac repair[J]. Adv Sci (Weinh),2023,10(14):2202964.

[7] Li R,Frangogiannis NG. Chemokines in cardiac fibrosis[J]. Curr Opin Physiol,2021,19:80-91.

[8] Ohayon L,Zhang X,Dutta P. The role of extracellular vesicles in regulating local and systemic inflammation in cardiovascular disease[J]. Pharmacol Res,2021,170:105692.

[9] Kim Y,Nurakhayev S,Nurkesh A,et al. Macrophage polarization in cardiac tissue repair following myocardial infarction[J]. Int J Mol Sci,2021,22(5):2715.

[10] Wagner MJ,Khan M,Mohsin S. Healing the broken heart;the immunomodulatory effects of stem cell therapy[J]. Front Immunol,2020,11:639.

[11] Chen W,Li L,Wang J,et al. The ABCA1-efferocytosis axis:a new strategy to protect against atherosclerosis[J]. Clin Chim Acta,2021,518:1-8.

[12] Jia D,Chen S,Bai P,et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction[J]. Circulation,2022,145(20):1542-1556.

[13] Wong NR,Mohan J,Kopecky BJ,et al. Resident cardiac macrophages mediate adaptive myocardial remodeling[J]. Immunity,2021,54(9):2072-2088.e7.

[14] Ma X,Meng Q,Gong S,et al. IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction[J]. Heliyon,2023,9(6):e17099.

[15] Zeng B,Liao X,Liu L,et al. Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway[J]. Life Sci,2021,267:118977.

[16] Glinton KE,Ma W,Lantz C,et al. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation[J]. J Clin Invest,2022,132(9):e140685.

[17] Kawaguchi N,Nakanishi T. Stem cell studies in cardiovascular biology and medicine:a possible key role of macrophages[J]. Biology (Basel),2022,11(1):122.

[18] Long C,Guo R,Han R,et al. Effects of macrophages on the proliferation and cardiac differentiation of human induced pluripotent stem cells[J]. Cell Commun Signal,2022,20(1):108.

[19] Walravens AS,Smolgovsky S,Li L,et al. Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA[J]. Sci Rep,2021,11(1):8666.

[20] Follin B,Hoeeg C,H?jgaard LD,et al. The initial cardiac tissue response to cryopreserved allogeneic adipose tissue-derived mesenchymal stromal cells in rats with chronic ischemic cardiomyopathy[J].Int J Mol Sci,2021,22(21):11758.

[21] Lima Correa B,El Harane N,Gomez I,et al. Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts[J]. Cardiovasc Res,2021,117(1):292-307.

[22] Hobby ARH,Berretta RM,Eaton DM,et al. Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype[J]. Am J Physiol Heart Circ Physiol,2021,321(4):H684-H701.

[23] Yao Y,Li F,Zhang M,et al. Targeting CaMKII-δ9 ameliorates cardiac ischemia/reperfusion injury by inhibiting myocardial inflammation[J]. Circ Res,2022,130(6):887-903.

[24] Zhuang L,Zong X,Yang Q,et al. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization[J]. EBioMedicine,2023,95:104744.

[25] Qin YY,Huang XR,Zhang J,et al. Neuropeptide Y attenuates cardiac remodeling and deterioration of function following myocardial infarction[J]. Mol Ther,2022,30(2):881-897.

[26] Jian Y,Zhou X,Shan W,et al. Crosstalk between macrophages and cardiac cells after myocardial infarction[J]. Cell Commun Signal,2023,21(1):109.

[27] Wang X,Guo D,Li W,et al. Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure[J]. J Cell Mol Med,2020,24(18):10677-10692.

[28] Li Y,Li X,Chen X,et al. Qishen granule (QSG) inhibits monocytes released from the spleen and protect myocardial function via the TLR4-MyD88-NF-κB p65 pathway in heart failure mice[J]. Front Pharmacol,2022,13:850187.

[29] Loi H,Kramar S,Laborde C,et al. Metformin attenuates postinfarction myocardial fibrosis and inflammation in mice[J]. Int J Mol Sci,2021,22(17):9393.

[30] Ning Y,Huang P,Chen G,et al. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J]. BMC Med,2023,21(1):96.

[31] Zhao T,Wang X,Liu Q,et al. Ginsenoside Rd promotes cardiac repair after myocardial infarction by modulating monocytes/macrophages subsets conversion[J]. Drug Des,Devel Ther,2022,16:2767-2782.

[32] Zhao J,Chen Y,Chen Q,et al. Curcumin ameliorates cardiac fibrosis by regulating macrophage-fibroblast crosstalk via IL18-P-SMAD2/3 signaling pathway inhibition[J]. Front Pharmacol,2022,12:784041.

[33] Shi HT,Huang ZH,Xu TZ,et al. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials[J]. EBioMedicine,2022,78:103968.

[34] Galili U,Goldufsky JW,Schaer GL. α-Gal nanoparticles mediated homing of endogenous stem cells for repair and regeneration of external and internal injuries by localized complement activation and macrophage recruitment[J]. Int J Mol Sci,2022,23(19):11490.

[35] Torrieri G,Fontana F,Figueiredo P,et al. Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction[J]. Nanoscale,2020,12(4):2350-2358.

[36] Zhou J,Liu W,Zhao X,et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization[J]. Adv Sci (Weinh),2021,8(20):2100505.

[37] Zhang Y,Cai Z,Shen Y,et al. Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction[J]. J Nanobiotechnology,2021,19(1):271.

[38] Chachques JC,Gardin C,Lila N,et al. Elastomeric cardiowrap scaffolds functionalized with mesenchymal stem cells-derived exosomes induce a positive modulation in the inflammatory and wound healing response of mesenchymal stem cell and macrophage[J]. Biomedicines,2021,9(7):824.

[39] Xiao W,Chen M,Zhou W,et al. An immunometabolic patch facilitates mesenchymal stromal/stem cell therapy for myocardial infarction through a macrophage-dependent mechanism[J]. Bioeng Transl Med,2023,8(3):e10471.

[40] Guo R,Wan F,Morimatsu M,et al. Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material[J]. Bioact Mater,2021,6(9):2999-3012.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(6):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(6):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(6):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(6):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]张伟 黄从新.巨噬细胞与心血管稳态和疾病[J].心血管病学进展,2019,(9):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
 ZHANG Wei,HUANG Congxin.Macrophages are Associated with Cardiovascular Homeostasis and Diseases[J].Advances in Cardiovascular Diseases,2019,(6):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
[6]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(6):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[7]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(6):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(6):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[9]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(6):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[10]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(6):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]

更新日期/Last Update: 2024-07-26