[1]毛嘉豪 周帆 穆军升.酸性代谢环境对心肌细胞分化影响的研究进展[J].心血管病学进展,2024,(6):534.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.013]
 MAO JiahaoZHOU FanMU Junsheng.Influence of Acidic Metabolic Environment on?ifferentiation of Cardiomyocytes[J].Advances in Cardiovascular Diseases,2024,(6):534.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.013]
点击复制

酸性代谢环境对心肌细胞分化影响的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年6期
页码:
534
栏目:
综述
出版日期:
2024-06-25

文章信息/Info

Title:
Influence of Acidic Metabolic Environment on?ifferentiation of Cardiomyocytes
作者:
毛嘉豪1 周帆 2 穆军升 1
(1.首都医科大学附属北京安贞医院心脏外科 北京市心肺血管疾病研究所,北京 100029;2.解放军总医院第三医学中心超声科,北京 100039)
Author(s):
MAO Jiahao1ZHOU Fan2MU Junsheng1
(1.Department of Cardiac Surgery,Beijing Anzhen Hospital,Capital Medical University,Beijing Institute of Heart Lung and Blood Vessel Diseases,Beijing 100029,China2.Department of Ultrasound,The Third Medical Center of Peoples Liberation Army of C hina General Hospital ,Beijing 100039,China)
关键词:
pH值乳酸干细胞心脏分化酸性代谢环境
Keywords:
pH valueLactic acidStem cellCardiac differentiationAcidic metabolic environment
DOI:
10.16806/j.cnki.issn.1004-3934.2024.06.013
摘要:
以干细胞为基础的心肌再生是治疗心肌梗死的前沿课题,控制干细胞的代谢微环境能影响干细胞向心肌细胞的分化,在临床应用中有着广阔前景。pH值是心肌细胞发育过程中代谢环境的重要指标。乳酸作为主要的酸性代谢产物之一,是调节心肌细胞早期发育阶段酸性代谢环境的关键代谢产物。现就pH值在心肌细胞生存与分化过程中的影响及相关机制的研究进展做一综述。
Abstract:
Stem cell-based myocardial regeneration is a frontier topic in the treatment of myocardial infarction. Manipulating the metabolic microenvironment of stem cells can influence their differentiation into cardiomyocytes,which have promising clinical applications. pH is an important indicator of the metabolic environment during cardiomyocyte development. A nd lactate ,as one of the main acidic metabolites,is a major regulator of the acidic metabolic environment during early cardiomyocyte development. Here,we summarize the progress of research into the influence of pH value and lactate on cardiomyocyte survival and differentiation ,as well as related mechanisms

参考文献/References:

[1]Anderson JL,Morrow DA. Acute myocardial infarction[J]. N Engl J Med,2017,376(21):2053-2064.

[2]Zheng L,Du J,Wang Z,et al. Molecular regulation of myocardial proliferation and regeneration[J]. Cell Regen,2021,10(1):13.

[3]Burridge PW,Keller G,Gold JD,et al. Production of de novo cardiomyocytes:human pluripotent stem cell differentiation and direct reprogramming[J]. Cell Stem Cell,2012,10(1):16-28.

[4]Hattori F,Fukuda K. Strategies for replacing myocytes with induced pluripotent stem in clinical protocols[J]. Transplant Rev (Orlando),2012,26(3):223-232.

[5]Ordo?o J,Pérez-Amodio S,Ball K,et al. The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes[J]. Biomater Adv,2022,139:213035.

[6]Haubner BJ,Schuetz T,Penninger JM. A reproducible protocol for neonatal ischemic injury and cardiac regeneration in neonatal mice[J]. Basic Res Cardiol,2016,111(6):64.

[7]Porrello ER,Mahmoud AI,Simpson E,et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family[J]. Proc Natl Acad Sci U S A,2013,110(1):187-192.

[8]Bergmann O,Bhardwaj RD,Bernard S,et al. Evidence for cardiomyocyte renewal in humans[J]. Science,2009,324(5923):98-102.

[9]Senyo SE,Steinhauser ML,Pizzimenti CL,et al. Mammalian heart renewal by pre-existing cardiomyocytes[J]. Nature,2013,493(7432):433-436.

[10]Zhang J,Ratanasirintrawoot S,Chandrasekaran S,et al. LIN28 regulates stem cell metabolism and conversion to primed pluripotency[J]. Cell Stem Cell,2016,19(1):66-80.

[11]农大雄,张景昌,雷唤启,等. 乳酸酸中毒与非乳酸增高性酸中毒对急性心肌梗死患者短期预后的影响[J]. 广西医学,2023,45(11):1291-1295.

[12]Cohen MV,Yang XM,Downey JM. The pH hypothesis of postconditioning:staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis[J]. Circulation,2007,115(14):1895-1903.

[13]Kim JS,He L,Lemasters JJ. Mitochondrial permeability transition:a common pathway to necrosis and apoptosis[J]. Biochem Biophys Res Commun,2003,304(3):463-470.

[14]Lemasters JJ,Qian T,He L,et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death,apoptosis,and autophagy[J]. Antioxid Redox Signal,2002,4(5):769-781.

[15]Kim JS,Qian T,Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes[J]. Gastroenterology,2003,124(2):494-503.

[16]Halestrap AP,Richardson AP. The mitochondrial permeability transition:a current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol,2015,78:129-141.

[17]Halestrap AP,Pasdois P. The role of the mitochondrial permeability transition pore in heart disease[J]. Biochim Biophys Acta,2009,1787(11):1402-1415.

[18]Perin EC,Tian M,Marini FC 3rd,et al. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model[J]. PloS One,2011,6(9):e22949.

[19]Williams AR,Trachtenberg B,Velazquez DL,et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy:functional recovery and reverse remodeling[J]. Circ Res,2011,108(7):792-796.

[20]Li Z,Fan Z,Xu Y,et al. pH-sensitive and thermosensitive hydrogels as stem-cell carriers for cardiac therapy[J]. ACS Appl Mater Interfaces,2016,8(17):10752-10760.

[21]Odunewu-Aderibigbe A,Fliegel L. The Na+/H+ exchanger and pH regulation in the heart[J]. IUBMB life,2014,66(10):679-685.

[22]Li X,Karki P,Lei L,et al. Na+/H+ exchanger isoform 1 facilitates cardiomyocyte embryonic stem cell differentiation[J]. Am J Physiol Heart Circ Physiol,2009,296(1):H159-H170.

[23]Karmazyn M,Sawyer M,Fliegel L. The Na(+)/H(+) exchanger:a target for cardiac therapeutic intervention[J]. Curr Drug Targets Cardiovasc Haematol Disord,2005,5(4):323-335.

[24]Vaughan-Jones RD,Villafuerte FC,Swietach P,et al. pH-regulated Na(+) influx into the mammalian ventricular myocyte:the relative role of Na(+)-H(+) exchange and Na(+)-HCO Co-transport[J]. J Cardiovasc Electrophysiol,2006,17 suppl 1:S134-S140.

[25]Fliegel L. Regulation of the Na(+)/H(+) exchanger in the healthy and diseased myocardium[J]. Expert Opin Ther Targets,2009,13(1):55-68.

[26]Rieder CV,Fliegel L. Developmental regulation of Na(+)/H(+) exchanger expression in fetal and neonatal mice[J]. Am J Physiol Heart Circ Physiol,2002,283(1):H273-H283.

[27]Hoshino K,Avkiran M. Effects of moderate hypothermia on sarcolemmal Na(+)/H(+) exchanger activity and its inhibition by cariporide in cardiac ventricular myocytes[J]. Br J Pharmacol,2001,134(7):1587-1595.

[28]Lev S,Kehat I,Gepstein L. Differentiation pathways in human embryonic stem cell-derived cardiomyocytes[J]. Ann N Y Acad Sci,2005,1047:50-65.

[29]Liu W,Ren Z,Lu K,et al. The suppression of medium acidosis improves the maintenance and differentiation of human pluripotent stem cells at high density in defined cell culture medium[J]. Int J Biol Sci,2018,14(5):485-496.

[30]Ritterhoff J,Tian R. Metabolism in cardiomyopathy:every substrate matters[J]. Cardiovasc Res,2017,113(4):411-421.

[31]Han M,Trotta P,Coleman C,et al. MCT-4,A511/Basigin and EF5 expression patterns during early chick cardiomyogenesis indicate cardiac cell differentiation occurs in a hypoxic environment[J]. Dev Dyn,2006,235(1):124-131.

[32]Chen CP,Aplin JD. Placental extracellular matrix:gene expression,deposition by placental fibroblasts and the effect of oxygen[J]. Placenta,2003,24(4):316-325.

[33]Kyllo HM,Wang D,Lorca RA,et al. Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency[J]. Am J Physiol Endocrinol Metab,2023,324(6):E556-E568.

[34]Duan X,Liu X,Zhan Z. Metabolic regulation of cardiac regeneration[J]. Front Cardiovasc Med,2022,9:933060.

[35]Lopaschuk GD,Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development,differentiation,and postnatal maturation[J]. J Cardiovasc Pharmacol,2010,56(2):130-140.

[36]André E,de Pauw A,Verdoy R,et al. Changes of metabolic phenotype of cardiac progenitor cells during differentiation:neutral effect of stimulation of AMP-activated protein kinase[J]. Stem Cells Dev,2019,28(22):1498-1513.

[37]Chen H,Yong W,Ren S,et al. Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth[J]. J Biol Chem,2006,281(37):27481-27491.

[38]Sun L,Yu J,Qi S,et al. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction[J]. J Cell Biochem,2014,115(11):1868-1876.

[39]Xiang Q,Yang B,Li L,et al. Critical role of Lin28-TNFR2 signalling in cardiac stem cell activation and differentiation[J]. J Cell Mol Med,2019,23(4):0.

[40]Zheng YW,Zhang L,Wang Y,et al. Thyroid cancer 1 (C8orf4) shows high expression,no mutation and reduced methylation level in lung cancers,and its expression correlates with β-catenin and DNMT1 expression and poor prognosis[J]. Oncotarget,2017,8(38):62880-62890.

[41]Ren Z,Liu J,Yao L,et al. Glutamate receptor ionotropic,kainate 1 serves as a novel tumor suppressor of colorectal carcinoma and predicts clinical prognosis[J]. Exp Ther Med,2020,20(6):167.

[42]Deisl C,Fine M,Moe OW,et al. Hypertrophy of human embryonic stem cell-derived cardiomyocytes supported by positive feedback between Ca2+ and diacylglycerol signals[J]. Pflugers Arch,2019,471(8):1143-1157.

[43]Du J,Zheng L,Gao P,et al. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration[J]. Cell Stem Cell,2022,29(4):545-558.e13.

[44]Tohyama S,Hattori F,Sano M,et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell,2013,12(1):127-137.

更新日期/Last Update: 2024-07-26