参考文献/References:
[1] Mukohda M,Mizuno R,Saito F,et al. Hypertension is linked to enhanced lymphatic contractile response via RGS16/RhoA/ROCK pathway[J]. Am J Physiol Heart Circ Physiol,2022,323(6):H1118-H1129.
[2] Yi Y,Tianxin Y,Zhangchi L,et al. Pinocembrin attenuates susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension[J]. Eur J Pharmacol,2023,960:176169.
[3] Zhou J,Yin G,Yu T,et al. Rosuvastatin reduces expression of tissue factor through inhibiting RhoA/ROCK pathway to ameliorate atherosclerosis[J]. Panminerva Med,2021,63(3):402-403.
[4] Babaahmadi-Rezaei H,Rezaei M,Ghaderi-Zefrehi H,et al.Reducing proteoglycan synthesis and NOX activity by ROCK inhibitors:therapeutic targets in atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets,2022,22(12):1191-1200.
[5] Zhou FT,Ma K. Fasudil protects against isoproterenol-induced myocardial infarction in mice via inhibiting Rho/ROCK signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(10):5659-5667.
[6] Hsu LW,Chen PW,Chang WT,et al. The role of ROCK in platelet-monocyte collaborative induction of thromboinflammation during acute coronary syndrome[J]. Thromb Haemost,2020,120(10):1417-1431.
[7] Kuriachan VP,Sumner GL,Mitchell LB. Sudden cardiac death[J]. Curr Probl Cardiol,2015,40(4):133-200.
[8] Shimokawa H,Sunamura S,Satoh K. RhoA/Rho-kinase in the cardiovascular system[J]. Circ Res,2016,118(2):352-366.
[9] Satoh K,Fukumoto Y,Shimokawa H. Rho-kinase:important new therapeutic target in cardiovascular diseases[J].
Am J Physiol Heart Circ Physiol,2011,301(2):H287-H296.
[10] Schofield AV,Bernard O. Rho-associated coiled-coil kinase(ROCK) signaling and disease[J]. Crit Rev Biochem Mol Biol,2013,48(4):301-316.
[11] Wan B,Li Y,Sun S,et al. Ganoderic acid A attenuates lipopolysaccharide-induced lung injury in mice [J]. Biosci Rep,2019,39(5):BSR20190301.
[12] Xie X,Peng J,Chang X,et al. Activation of RhoA/ROCK regulates NF-κB signaling pathway in experimental diabetic nephropathy[J]. Mol Cell Endocrinol,2013,369(1-2):86-97.
[13] Yu B,Sladojevic N,Blair JE,et al. Targeting Rho-associated coiled-coil forming protein kinase(ROCK) in cardiovascular fibrosis and stiffening[J]. Expert Opin Ther Targets,2020,24(1):47-62.
[14] Gao HC,Zhao H,Zhang WQ,et al. The role of the Rho/Rock signaling pathway in the pathogenesis of acute ischemic myocardial fibrosis in rat models[J]. Exp Ther Med,2013,5(4):1123-1128.
[15] Cachero TG,Morielli AD,Peralta EG. The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel[J]. Cell,1998,93(6):1077-1085.
[16] McNeish AJ,Jimenez-Altayo F,Cottrell GS,et al. Statins and selective inhibition of Rho kinase protect small conductance calcium-activated potassium channel function(K(Ca)2.3) in cerebral arteries[J]. PLoS One,2012,7(10):e46735.
[17] Pandit LM,Lloyd EE,Reynolds JO,et al. TWIK-2 channel deficiency leads to pulmonary hypertension through a Rho-kinase-mediated process[J]. Hypertension,2014,64(6):1260-1265.
[18] Muessel MJ,Harry GJ,Armstrong DL,et al. SDF-1α and LPA modulate microglia potassium channels through Rho GTPases to regulate cell morphology[J]. Glia,2013,61(10):1620-1628.
[19] Maruta T,Yanagita T,Matsuo K,et al. Lysophosphatidic acid-LPA1 receptor-Rho-Rho kinase-induced up-regulation of Nav1.7 sodium channel mRNA and protein in adrenal chromaffin cells:enhancement of 22Na+ influx ,45Ca2+ influx and catecholamine secretion [J]. J Neurochem,2008,105(2):401-412.
[20] Pavlov TS,Levchenko V,Staruschenko A. Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel(ENaC)-mediated sodium reabsorption[J]. J Biol Chem,2014,289(41):28651-28659.
[21] Olgar Y,Celen MC,Yamasan BE,et al. Rho-kinase inhibition reverses impaired Ca2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy [J]. Cell Calcium,2017,67:81-90.
[22] Yang X,Zhao S,Wang S,et al. Systemic inflammation indicators and risk of incident arrhythmias in 478,524 individuals:evidence from the UK Biobank cohort[J]. BMC Med,2023,21(1):76.
[23] Armbruster AL,Campbell KB,Kahanda MG,et al. The role of inflammation in the pathogenesis and treatment of arrhythmias[J]. Pharmacotherapy,2022,42(3):250-262.
[24] Zhang Y,Zhang S,Li B,et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res,2022,118(3):785-797.
[25] Shi T,Wang G,Peng J,et al. Loss of MD1 promotes inflammatory and apoptotic atrial remodelling in diabetic cardiomyopathy by activating the TLR4/NF-κB signalling pathway[J]. Pharmacology,2023,108(4):311-320.
[26] Jiang X,Kong B,Shuai W,et al. Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia[J]. Eur J Pharmacol,2019,844:79-86.
[27] Nguyen MN,Kiriazis H,Gao XM,et al. Cardiac fibrosis and arrhythmogenesis[J]. Compr Physiol,2017,7(3):1009-1049.
[28] Liu LJ,Yao FJ,Lu GH,et al. The role of the Rho/ROCK pathway in AngⅡ a nd TGF-β1-induced atrial remodeling[J]. PLoS One,2016,11(9):e0161625.
[29] Lv W,Zhang L,Cheng X,et al. Apelin inhibits angiotensinⅡ-induced atrial fibrosis and atrial fibrillation via TGF-β1/Smad2/α-SMA pathway[J]. Front Physiol,2020,11:583570.
[30] Tian M,Xiao Y,Xue J,et al. The expression of BNP,ET-1,and TGF-β1 in myocardium of rats with ventricular arrhythmias[J]. Int J Mol Sci,2019,20(23):5845.
[31] Wang K,Zhao J,Guo Z. Interaction of KCNA5 ,CX43,and CX40 proteins in the atrial muscle of patients with atrial fibrillation[J]. Cell Biol Int,2022,46(11):1834-1840.
[32] Guo YH,Yang YQ. Atrial fibrillation:focus on myocardial connexins and gap j unctions[J]. Biology(Basel),2022,11(4):489.
[33] Chen Y,Su F,Han J,et al. Expression of Rho kinase and its mechanism in the left atrial appendage in patients with atrial fibrillation[J]. Heart Surg Forum,2018,21(1):E044-E048.
[34] Sah VP,Minamisawa S,Tam SP,et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure[J]. J Clin Invest,1999,103(12):1627-1634.
[35] Chen YL,Ren Y,Xu W,et al. Constriction of retinal venules to endothelin-1:obligatory roles of ETA receptors,extracellular calcium entry,and Rho kinase[J]. Invest Ophthalmol Vis Sci,2018,59(12):5167-5175.
[36] Yamada N,Asano Y,Fujita M,et al. Mutant KCNJ3 and KCNJ5 potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation[J]. Circulation,2019,139(18):2157-2169.
[37] Barrese V,Stott JB,Greenwood IA. Greenwood,KCNQ-encoded potassium channels as therapeutic targets[J]. Annu Rev Pharmacol Toxicol,2018,58:625-648.
[38] Shimokawa H,Hiramori K,Iinuma H,et al. Anti-anginal effect of fasudil,a Rho-kinase inhibitor,in patients with stable effort angina:a multicenter study[J]. J Cardiovasc Pharmacol,2002,40(5):751-761.
[39] 郑菊,吴雁鸣,尤华,等. 盐酸法舒地尔注射液治疗不稳定型心绞痛患者的临床研究[J]. 中国临床药理学杂志,2022,38(12):1299-1302,1315
[40] Glotfelty EJ,Tovar-Y-Romo LB,Hsueh SC,et al. The RhoA-ROCK1/ROCK2 pathway exacerbates inflammatory signaling in immortalized and primary microglia[J]. Cells,2023,12(10):1367.
[41] Bachtler N,Torres S,Ortiz C,et al. The non-selective Rho-kinase inhibitors Y-27632 and Y-33075 decrease contraction but increase migration in murine and human hepatic stellate cells[J]. PLoS One,2023,18(1):e0270288.
相似文献/References:
[1]赵靖华,综述,尚美生,等.衰老与心律失常[J].心血管病学进展,2016,(2):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
ZHAO Jinghua,SHANG Meisheng,YAO Yan.Aging and Arrhythmias[J].Advances in Cardiovascular Diseases,2016,(7):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
[2]娄奇,李为民.CaV1.2在心律失常中作用的研究进展[J].心血管病学进展,2019,(6):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
LOU Qi,LI Weimin.CaV1.2 in Arrhythmias[J].Advances in Cardiovascular Diseases,2019,(7):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
[3]李如意 刘延俊 杜荣品.心力衰竭时β3-肾上腺素能受体与心律失常的研究进展[J].心血管病学进展,2020,(1):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
LI Ruyi,LIU Yanjun,DU Rongpin.β3-adrenergic Receptors and Arrhythmia in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(7):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
[4]阿依尼尕尔·马木提 周贤惠.光遗传学技术在心律失常研究中的应用及进展[J].心血管病学进展,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
Ayinigaer·Mamuti,ZHOU Xianhui.Application and Progress of Optogenetics in Study of Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
[5]程家元 殷跃辉.沙库巴曲缬沙坦在心血管疾病中的临床应用与展望[J].心血管病学进展,2020,(9):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
CHENG Jiayuan YIN Yuehui.Clinical Application and Prospect of Sacubitril Valsartan in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
[6]查克岚 叶强.心电图成像在心律失常诊治中的研究进展[J].心血管病学进展,2020,(9):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
ZHA Kelan,YE Qiang.Electrocardiographic Imaging in Arrhythmia Diagnosis and Treatment[J].Advances in Cardiovascular Diseases,2020,(7):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
[7]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(7):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[8]林晶 吉庆伟 刘伶.致心律失常性心肌病的研究进展[J].心血管病学进展,2020,(12):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
LING JingJI Qingwei,LIU Lin.Arrhythmogenic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(7):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
[9]李翠兰 刘文玲 高元丰.先天性与获得性长QT综合征诊断治疗现状[J].心血管病学进展,2021,(5):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
LI Cuilan,LIU Wenling,GAO Yuanfeng.Diagnostic and Therapeutic Status for Congenital and Acquired Long QT Syndrome[J].Advances in Cardiovascular Diseases,2021,(7):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
[10]崔利军 王永德.脉冲电场用于心律失常消融的研究进展[J].心血管病学进展,2022,(1):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]
CUI Lijun,WANG Yongde.Pulsed Electric Field for Ablation of Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(7):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]