[1]余意 杨波.Rho/ROCK通路与心律失常的研究进展[J].心血管病学进展,2024,(7):577.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.001]
 YU Yi,YANG Bo.Rho/ROCK Pathway and Arrhythmia[J].Advances in Cardiovascular Diseases,2024,(7):577.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.001]
点击复制

Rho/ROCK通路与心律失常的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年7期
页码:
577
栏目:
综述
出版日期:
2024-07-25

文章信息/Info

Title:
Rho/ROCK Pathway and Arrhythmia
作者:
余意 杨波
(武汉大学人民医院心内科,湖北 武汉 430060)
Author(s):
YU YiYANG Bo
(Department of Cardiology,Renmin Hospital of Wuhan University,Wuhan 430060,Hubei,China)
关键词:
Rho/ROCK通路心律失常电生理
Keywords:
Rho/ROCK pathwayArrhythmiaElectrophysiology
DOI:
10.16806/j.cnki.issn.1004-3934.2024.07.001
摘要:
越来越多的证据表明,Rho/ROCK通路在不同程度上调控着细胞的生长、发育、迁移、增殖和死亡, 并在各种疾病中发挥重要作用。此外,Rho/ROCK通路与纤维细胞、钙离子和炎症因子等的相互作用对糖尿病、肺动脉高压、神经损伤性疾病以及心血管疾病的发生与发展产生了重要的影响。然而,近年来Rho/ROCK通路在心律失常中发挥的作用备受关注,现通过总结相关研究,为抗心律失常药的研究提供进一步参考。
Abstract:
Numerous evidence shows that Rho/ROCK pathway regulates cell growth,development,migration,proliferation and death to varying degrees,and plays an important role in various diseases. In addition,the interaction of Rho/ROCK pathway with fibrocytes,calcium ions and inflammatory factors has an important impact on the occurrence and development of diabetes,pulmonary hypertension,neurological injury diseases and cardiovascular diseases. However,in recent years,the role of Rho/ROCK pathway in arrhythmia has attracted much attention,and relevant studies are summarized to provide further research reference for antiarrhythmic drugs

参考文献/References:

[1] Mukohda M,Mizuno R,Saito F,et al. Hypertension is linked to enhanced lymphatic contractile response via RGS16/RhoA/ROCK pathway[J]. Am J Physiol Heart Circ Physiol,2022,323(6):H1118-H1129.

[2] Yi Y,Tianxin Y,Zhangchi L,et al. Pinocembrin attenuates susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension[J]. Eur J Pharmacol,2023,960:176169.

[3] Zhou J,Yin G,Yu T,et al. Rosuvastatin reduces expression of tissue factor through inhibiting RhoA/ROCK pathway to ameliorate atherosclerosis[J]. Panminerva Med,2021,63(3):402-403.

[4] Babaahmadi-Rezaei H,Rezaei M,Ghaderi-Zefrehi H,et al.Reducing proteoglycan synthesis and NOX activity by ROCK inhibitors:therapeutic targets in atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets,2022,22(12):1191-1200.

[5] Zhou FT,Ma K. Fasudil protects against isoproterenol-induced myocardial infarction in mice via inhibiting Rho/ROCK signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(10):5659-5667.

[6] Hsu LW,Chen PW,Chang WT,et al. The role of ROCK in platelet-monocyte collaborative induction of thromboinflammation during acute coronary syndrome[J]. Thromb Haemost,2020,120(10):1417-1431.

[7] Kuriachan VP,Sumner GL,Mitchell LB. Sudden cardiac death[J]. Curr Probl Cardiol,2015,40(4):133-200.

[8] Shimokawa H,Sunamura S,Satoh K. RhoA/Rho-kinase in the cardiovascular system[J]. Circ Res,2016,118(2):352-366.

[9] Satoh K,Fukumoto Y,Shimokawa H. Rho-kinase:important new therapeutic target in cardiovascular diseases[J].

Am J Physiol Heart Circ Physiol,2011,301(2):H287-H296.

[10] Schofield AV,Bernard O. Rho-associated coiled-coil kinase(ROCK) signaling and disease[J]. Crit Rev Biochem Mol Biol,2013,48(4):301-316.

[11] Wan B,Li Y,Sun S,et al. Ganoderic acid A attenuates lipopolysaccharide-induced lung injury in mice [J]. Biosci Rep,2019,39(5):BSR20190301.

[12] Xie X,Peng J,Chang X,et al. Activation of RhoA/ROCK regulates NF-κB signaling pathway in experimental diabetic nephropathy[J]. Mol Cell Endocrinol,2013,369(1-2):86-97.

[13] Yu B,Sladojevic N,Blair JE,et al. Targeting Rho-associated coiled-coil forming protein kinase(ROCK) in cardiovascular fibrosis and stiffening[J]. Expert Opin Ther Targets,2020,24(1):47-62.

[14] Gao HC,Zhao H,Zhang WQ,et al. The role of the Rho/Rock signaling pathway in the pathogenesis of acute ischemic myocardial fibrosis in rat models[J]. Exp Ther Med,2013,5(4):1123-1128.

[15] Cachero TG,Morielli AD,Peralta EG. The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel[J]. Cell,1998,93(6):1077-1085.

[16] McNeish AJ,Jimenez-Altayo F,Cottrell GS,et al. Statins and selective inhibition of Rho kinase protect small conductance calcium-activated potassium channel function(K(Ca)2.3) in cerebral arteries[J]. PLoS One,2012,7(10):e46735.

[17] Pandit LM,Lloyd EE,Reynolds JO,et al. TWIK-2 channel deficiency leads to pulmonary hypertension through a Rho-kinase-mediated process[J]. Hypertension,2014,64(6):1260-1265.

[18] Muessel MJ,Harry GJ,Armstrong DL,et al. SDF-1α and LPA modulate microglia potassium channels through Rho GTPases to regulate cell morphology[J]. Glia,2013,61(10):1620-1628.

[19] Maruta T,Yanagita T,Matsuo K,et al. Lysophosphatidic acid-LPA1 receptor-Rho-Rho kinase-induced up-regulation of Nav1.7 sodium channel mRNA and protein in adrenal chromaffin cells:enhancement of 22Na+ influx ,45Ca2+ influx and catecholamine secretion [J]. J Neurochem,2008,105(2):401-412.

[20] Pavlov TS,Levchenko V,Staruschenko A. Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel(ENaC)-mediated sodium reabsorption[J]. J Biol Chem,2014,289(41):28651-28659.

[21] Olgar Y,Celen MC,Yamasan BE,et al. Rho-kinase inhibition reverses impaired Ca2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy [J]. Cell Calcium,2017,67:81-90.

[22] Yang X,Zhao S,Wang S,et al. Systemic inflammation indicators and risk of incident arrhythmias in 478,524 individuals:evidence from the UK Biobank cohort[J]. BMC Med,2023,21(1):76.

[23] Armbruster AL,Campbell KB,Kahanda MG,et al. The role of inflammation in the pathogenesis and treatment of arrhythmias[J]. Pharmacotherapy,2022,42(3):250-262.

[24] Zhang Y,Zhang S,Li B,et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res,2022,118(3):785-797.

[25] Shi T,Wang G,Peng J,et al. Loss of MD1 promotes inflammatory and apoptotic atrial remodelling in diabetic cardiomyopathy by activating the TLR4/NF-κB signalling pathway[J]. Pharmacology,2023,108(4):311-320.

[26] Jiang X,Kong B,Shuai W,et al. Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia[J]. Eur J Pharmacol,2019,844:79-86.

[27] Nguyen MN,Kiriazis H,Gao XM,et al. Cardiac fibrosis and arrhythmogenesis[J]. Compr Physiol,2017,7(3):1009-1049.

[28] Liu LJ,Yao FJ,Lu GH,et al. The role of the Rho/ROCK pathway in AngⅡ a nd TGF-β1-induced atrial remodeling[J]. PLoS One,2016,11(9):e0161625.

[29] Lv W,Zhang L,Cheng X,et al. Apelin inhibits angiotensinⅡ-induced atrial fibrosis and atrial fibrillation via TGF-β1/Smad2/α-SMA pathway[J]. Front Physiol,2020,11:583570.

[30] Tian M,Xiao Y,Xue J,et al. The expression of BNP,ET-1,and TGF-β1 in myocardium of rats with ventricular arrhythmias[J]. Int J Mol Sci,2019,20(23):5845.

[31] Wang K,Zhao J,Guo Z. Interaction of KCNA5 ,CX43,and CX40 proteins in the atrial muscle of patients with atrial fibrillation[J]. Cell Biol Int,2022,46(11):1834-1840.

[32] Guo YH,Yang YQ. Atrial fibrillation:focus on myocardial connexins and gap j unctions[J]. Biology(Basel),2022,11(4):489.

[33] Chen Y,Su F,Han J,et al. Expression of Rho kinase and its mechanism in the left atrial appendage in patients with atrial fibrillation[J]. Heart Surg Forum,2018,21(1):E044-E048.

[34] Sah VP,Minamisawa S,Tam SP,et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure[J]. J Clin Invest,1999,103(12):1627-1634.

[35] Chen YL,Ren Y,Xu W,et al. Constriction of retinal venules to endothelin-1:obligatory roles of ETA receptors,extracellular calcium entry,and Rho kinase[J]. Invest Ophthalmol Vis Sci,2018,59(12):5167-5175.

[36] Yamada N,Asano Y,Fujita M,et al. Mutant KCNJ3 and KCNJ5 potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation[J]. Circulation,2019,139(18):2157-2169.

[37] Barrese V,Stott JB,Greenwood IA. Greenwood,KCNQ-encoded potassium channels as therapeutic targets[J]. Annu Rev Pharmacol Toxicol,2018,58:625-648.

[38] Shimokawa H,Hiramori K,Iinuma H,et al. Anti-anginal effect of fasudil,a Rho-kinase inhibitor,in patients with stable effort angina:a multicenter study[J]. J Cardiovasc Pharmacol,2002,40(5):751-761.

[39] 郑菊,吴雁鸣,尤华,等. 盐酸法舒地尔注射液治疗不稳定型心绞痛患者的临床研究[J]. 中国临床药理学杂志,2022,38(12):1299-1302,1315

[40] Glotfelty EJ,Tovar-Y-Romo LB,Hsueh SC,et al. The RhoA-ROCK1/ROCK2 pathway exacerbates inflammatory signaling in immortalized and primary microglia[J]. Cells,2023,12(10):1367.

[41] Bachtler N,Torres S,Ortiz C,et al. The non-selective Rho-kinase inhibitors Y-27632 and Y-33075 decrease contraction but increase migration in murine and human hepatic stellate cells[J]. PLoS One,2023,18(1):e0270288.

相似文献/References:

[1]赵靖华,综述,尚美生,等.衰老与心律失常[J].心血管病学进展,2016,(2):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
 ZHAO Jinghua,SHANG Meisheng,YAO Yan.Aging and Arrhythmias[J].Advances in Cardiovascular Diseases,2016,(7):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
[2]娄奇,李为民.CaV1.2在心律失常中作用的研究进展[J].心血管病学进展,2019,(6):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
 LOU Qi,LI Weimin.CaV1.2 in Arrhythmias[J].Advances in Cardiovascular Diseases,2019,(7):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
[3]李如意 刘延俊 杜荣品.心力衰竭时β3-肾上腺素能受体与心律失常的研究进展[J].心血管病学进展,2020,(1):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
 LI Ruyi,LIU Yanjun,DU Rongpin.β3-adrenergic Receptors and Arrhythmia in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(7):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
[4]阿依尼尕尔·马木提 周贤惠.光遗传学技术在心律失常研究中的应用及进展[J].心血管病学进展,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
 Ayinigaer·Mamuti,ZHOU Xianhui.Application and Progress of Optogenetics in Study of Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
[5]程家元 殷跃辉.沙库巴曲缬沙坦在心血管疾病中的临床应用与展望[J].心血管病学进展,2020,(9):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
 CHENG Jiayuan YIN Yuehui.Clinical Application and Prospect of Sacubitril Valsartan in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
[6]查克岚 叶强.心电图成像在心律失常诊治中的研究进展[J].心血管病学进展,2020,(9):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
 ZHA Kelan,YE Qiang.Electrocardiographic Imaging in Arrhythmia Diagnosis and Treatment[J].Advances in Cardiovascular Diseases,2020,(7):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
[7]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(7):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[8]林晶 吉庆伟 刘伶.致心律失常性心肌病的研究进展[J].心血管病学进展,2020,(12):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
 LING JingJI Qingwei,LIU Lin.Arrhythmogenic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(7):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
[9]李翠兰 刘文玲 高元丰.先天性与获得性长QT综合征诊断治疗现状[J].心血管病学进展,2021,(5):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
 LI Cuilan,LIU Wenling,GAO Yuanfeng.Diagnostic and Therapeutic Status for Congenital and Acquired Long QT Syndrome[J].Advances in Cardiovascular Diseases,2021,(7):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
[10]崔利军 王永德.脉冲电场用于心律失常消融的研究进展[J].心血管病学进展,2022,(1):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]
 CUI Lijun,WANG Yongde.Pulsed Electric Field for Ablation of Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(7):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]

更新日期/Last Update: 2024-08-09