参考文献/References:
[1] Hawas SS,El-Sayed SM,Elzahhar PA,et al. New 2-alkoxycyanopyridine derivatives as inhibitors of EGFR,HER2,and DHFR:synthesis,anticancer evaluation,and molecular modeling studies[J]. Bioorg Chem,2023,141:106874.
[2] Shipra,Tembhre MK,Hote MP,et al. PGC-1α agonist rescues doxorubicin-induced cardiomyopathy by mitigating the oxidative stress and necroptosis[J]. Antioxidants (Basel),2023,12(9):1720.
[3] Robert Li Y ,Traore K,Zhu H. Novel molecular mechanisms of doxorubicin cardiotoxicity:latest leading-edge advances and clinical implications[J]. Mol Cell Biochem,2023.DOI:10.1007/s11010-023-04783-3.
[4] Dixon SJ,Lemberg KM,Lamprecht MR,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072.
[5] Zeidan RS,Han SM,Leeuwenburgh C,et al. Iron homeostasis and organismal aging[J]. Ageing Res Rev,2021,72:101510.
[6] Dutt S,Hamza I,Bartnikas TB. Molecular mechanisms of iron and heme metabolism[J]. Annu Rev Nutr,2022,42:311-335.
[7] Zhao T,Yang Q,Xi Y,et al. Ferroptosis in rheumatoid arthritis:a potential therapeutic strategy[J]. Front Immunol,2022,13:779585.
[8] Stockwell BR. Ferroptosis turns 10: emerging mechanisms,physiological functions,and therapeutic applications[J]. Cell,2022,185(14):2401-2421.
[9] Xu S,He Y,Lin L,et al. The emerging role of ferroptosis in intestinal disease[J]. Cell Death Dis,2021,12(4):289.
[10] Tang D,Chen X,Kang R,et al. Ferroptosis:molecular mechanisms and health implications[J]. Cell Res,2021,31(2):107-125.
[11] Jiang X,Stockwell BR,Conrad M. Ferroptosis:mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol,2021,22(4):266-282.
[12] Zhang X,Hou L,Guo Z,et al. Lipid peroxidation in osteoarthritis:focusing on 4-hydroxynonenal, malondialdehyde ,and ferroptosis[J]. Cell Death Discov,2023,9(1):320.
[13] Nishida Xavier da Silva T,Friedmann Angeli JP,Ingold I. GPX4:old lessons,new features[J]. Biochem Soc Trans,2022,50(3):1205-1213.
[14] Xu C,Sun S,Johnson T,et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity[J]. Cell Rep,2021,35(11):109235.
[15] Niu B,Liao K,Zhou Y,et al. Application of glutathione depletion in cancer therapy:enhanced ROS-based therapy,ferroptosis,and chemotherapy[J]. Biomaterials,2021,277:121110.
[16] Liu MR,Zhu WT,Pei DS. System Xc-: a key regulatory target of ferroptosis in cancer[J]. Invest New Drugs,2021,39(4):1123-1131.
[17] Liu J,Kang R,Tang D. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J,2022,289(22):7038-7050.
[18] Li S,He Y,Chen K,et al. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma[J]. Oxid Med Cell Longev,2021,2021:2915019.
[19] Costa I,Barbosa DJ,Benfeito S,et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases[J]. Pharmacol Ther,2023,244:108373.
[20] Sun Y,Berleth N,Wu W,et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells[J]. Cell Death Dis,2021,12(11):1028.
[21] Tadokoro T,Ikeda M,Ide T,et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight,2023,8(6): e169756.
[22] Du Y,Guo Z. Recent progress in ferroptosis:inducers and inhibitors[J]. Cell Death Discov,2022,8(1):501.
[23] Fang X,Wang H,Han D,et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A,2019,116(7):2672-2680.
[24] Zhong Y,Wang Y,Li X,et al. PRMT4 facilitates white adipose tissue browning and thermogenesis by methylating PPARγ[J]. Diabetes,2023,72(8):1095-1111.
[25] Wang Y,Yan S,Liu X,et al. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway[J]. Cell Death Differ,2022,29(10):1982-1995.
[26] Ge MH,Tian H,Mao L,et al. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J]. CNS Neurosci Ther,2021,27(9):1023-1040.
[27] Opstad TB,Papotti B,?kra S,et al. Sirtuin1,not NAMPT,possesses anti-inflammatory effects in epicardial,pericardial and subcutaneous adipose tissue in patients with CHD[J]. J Transl Med,2023,21(1):644.
[28] Wang AJ,Tang Y,Zhang J,et al. Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2[J]. Redox Biol,2022,52:102310.
[29] Wu YZ,Zhang L,Wu ZX,et al. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway[J]. Oxid Med Cell Longev,2019,2019:2150394.
[30] Liu D,Ma Z,Xu L,et al. PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades[J]. Aging(Albany NY),2019,11(22):10061-10073.
[31] Wang W,Zhong X,Fang Z,et al. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway[J]. Chem Biol Interact,2023,377:110469.
[32] Ulasov AV,Rosenkranz AA,Georgiev GP,et al. Nrf2/Keap1/ARE signaling:towards specific regulation[J]. Life Sci,2022,291:120111.
[33] Tanase DM,Gosav EM,Anton MI,et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney disease(DKD):new perspectives[J]. Biomolecules,2022,12(9):1227.
[34] Mao Y,Ren J,Yang L. FUN14 domain containing 1 (FUNDC1):a promising mitophagy receptor regulating mitochondrial homeostasis in cardiovascular diseases[J]. Front Pharmacol,2022,13:887045.
[35] Ta N,Qu C,Wu H,et al. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy[J]. Proc Natl Acad Sci U S A,2022,119(36):e2117396119.
[36] Wu Y,Zhan S,Xu Y,et al. RNA modifications in cardiovascular diseases,the potential therapeutic targets[J]. Life Sci,2021,278:119565.
[37] Cheng Y,Wang M,Zhou J,et al. The important role of N6-methyladenosine RNA modification in non-small cell lung cancer[J]. Genes(Basel),2021,12(3):440.
[38] Guo W,Zhang C,Feng P,et al. M6A methylation of DEGS2,a key ceramide-synthesizing enzyme,is involved in colorectal cancer progression through ceramide synthesis[J]. Oncogene,2021,40(40):5913-5924.
[39] Zhuang S,Ma Y,Zeng Y,et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis[J]. Cell Biol Toxicol,2023,39(3):1015-1035.
[40] Cagle P,Qi Q,Niture S,et al. KCNQ1OT1:an oncogenic long noncoding RNA[J]. Biomolecules,2021,11(11):1602.
相似文献/References:
[1]袁明明 赖松青 张泽宇 吴起才.铁死亡在脓毒症心脏功能损伤中的研究进展[J].心血管病学进展,2022,(1):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
YUAN mingmingLAI SongqingZHANG ZeyuWU Qicai.Ferroptosis in Cardiac Function Impairment in Sepsis[J].Advances in Cardiovascular Diseases,2022,(4):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
[2]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[3]彭可玲 贾晓艳 王华 刘永铭.铁死亡与心力衰竭的研究进展[J].心血管病学进展,2022,(5):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
PENG Keling,JIA Xiaoyan,WANG Hua,et al.Ferroptosis and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(4):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
[4]邵亚兰 马继鹏 卢林鹤 熊祥 马燕燕 刘金成 杨剑.铁死亡与铁自噬在中的研究进展[J].心血管病学进展,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
SHAO Yalan,MA Jipeng,LU Linhe,et al.Ferroptosis and Ferritinophagy in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(4):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
[5]孙悦 付松波 李亦兰.心肌细胞铁死亡及其检测方法[J].心血管病学进展,2023,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
SUN Yue,FU Songbo,LI Yilan.Methods for the Detection of Ferroptosis in Cardiomyocytes[J].Advances in Cardiovascular Diseases,2023,(4):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
[6]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(4):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[7]王文杰 杨嘉馨 丁耀东 王可馨 牛佳龙 葛海龙.铁死亡在心血管疾病中的研究进展[J].心血管病学进展,2023,(5):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
WANG Wenjie,YANG Jiaxin,DING Yaodong,et al.Ferroptosis in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(4):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
[8]于永丽 李艳 高奋.铁死亡在血管紧张素Ⅱ诱导的心肌肥大中的作用研究进展[J].心血管病学进展,2023,(12):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
YU Yongli,LI Yan,GAO Fen.Ferroptosis in Angiotensin-Induced Cardiac hypertrophy[J].Advances in Cardiovascular Diseases,2023,(4):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
[9]李心瑶 陈俊 李灼.脓毒症心肌病的发病机制研究进展[J].心血管病学进展,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
LI Xinyao,CHEN Jun,LI Zhuo.Pathogenesis of Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(4):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
[10]赵 珂 陈晓姝 魏希进 张 娟 刘 杨 卞雨敬 袁 杰.铁死亡的调控机制及其在蒽环类药物心脏毒性中的研究进展[J].心血管病学进展,2024,(3):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]
First Clinical Medical College,Shandong University of Traditional Chinese Medicine,Jinan 0000,et al.Regulatory Mechanism of Ferroptosis and Its Progress in Anthracycline-Induced Cardiotoxicity[J].Advances in Cardiovascular Diseases,2024,(4):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]