[1]琚敏 汪蕾 方纬.18F-NaF 正电子发射断层显像在动脉斑块显像的临床应用进展[J].心血管病学进展,2024,(2):115.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.005]
 JU MinWANG LeiFANG Wei.Clinical Application Progress of 18F-NaF PET?rterial Plaque Imaging[J].Advances in Cardiovascular Diseases,2024,(2):115.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.005]
点击复制

18F-NaF 正电子发射断层显像在动脉斑块显像的临床应用进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年2期
页码:
115
栏目:
综述
出版日期:
2024-02-25

文章信息/Info

Title:
Clinical Application Progress of 18F-NaF PET?rterial Plaque Imaging
作者:
琚敏 汪蕾 方纬
(北京协和医学院 中国医学科学院阜外医院核医学科,北京,100037)
Author(s):
JU MinWANG LeiFANG Wei
?Department of Nuclear Medicine,Fuwai Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100037, China)
关键词:
动脉斑块钙化18F标记氟化钠正电子发射断层显像冠心病
Keywords:
Arterial plaque calcification18F-NaF positron emission tomographyCoronary artery heart disease
DOI:
10.16806/j.cnki.issn.1004-3934.2024.02.005
摘要:
动脉粥样硬化斑块破裂是心源性猝死的主要原因,钙化的进展也是心血管病风险的一个重要预测因子,但斑块破裂的发生难以预测,钙化的进展也难以评估。近年来,快速发展的分子成像技术使得对高风险斑块的无创识别成为可能。18F标记氟化钠正电子发射断层显像是可用于无创性检测动脉高风险斑块的成像方法,不仅可识别钙化活跃的斑块,对患者进行危险分层,还可监测血管钙化的疾病进展、指导治疗干预,以及评估抗动脉粥样硬化药物的疗效,促进治疗方法的改进。现对18F标记氟化钠正电子发射断层显像的机制、识别易损斑块的能力、危险分层和预后判断的能力等方面进行综述。
Abstract:
Atherosclerotic plaque rupture is the main cause of sudden cardiac death,and the progress of calcification is also an important predictor of cardiovascular risk,but it is difficult to predict the occurrence of plaque rupture and evaluate the progress of calcification. In recent years,the rapid development of molecular imaging technology makes it possible to identify high-risk plaques non-invasively. 18F-labeled sodium fluoride positron emission tomography is a noninvasive imaging method that can be used for detection of arterial high-risk plaques,which can not only identify plaques with active calcification,stratify patients at risk,but also monitor the progression of vascular calcification,guide treatment intervention,and evaluate the efficacy of anti-atherosclerosis drugs to promote the improvement of treatment. In this paper,the mechanism of 18F-NaF PET imaging,the ability to identify vulnerable plaques,risk stratification and prognosis judgment are reviewed

参考文献/References:

[1] Irkle A,Vesey AT,Lewis DY,et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography[J]. Nat Commun,2015,6:7495.
[2] Fiz F,Morbelli S,Piccardo A,et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging:inverse correlation between calcification density and mineral metabolic activity[J]. J Nucl Med,2015,56(7):1019-1023.
[3] Blau M,Nagler W,Bender MA. Fluorine-18:a new isotope for bone scanning[J]. J Nucl Med,1962,3:332-334.
[4] Blau M,Ganatra R,Bender MA. 18F-fluoride for bone imaging[J]. Semin Nucl Med,1972,2(1):31-37.
[5] New SE,Goettsch C,Aikawa M,et al. Macrophage-derived matrix vesicles:an alternative novel mechanism for microcalcification in atherosclerotic plaques[J]. Circ Res,2013,113(1):72-77.
[6] Chen W,Dilsizian V. Targeted PET/CT imaging of vulnerable atherosclerotic plaques:microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose[J]. Curr Cardiol Rep,2013,15(6):364.
[7] Nadra I,Mason JC,Philippidis P,et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways:a vicious cycle of inflammation and arterial calcification?[J]. Circ Res,2005,96(12):1248-1256.
[8] Virmani R,Burke AP,Farb A,et al. Pathology of the vulnerable plaque[J]. J Am Coll Cardiol,2006,47(8 suppl):C13-C18.
[9] Kelly-Arnold A,Maldonado N,Laudier D,et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries[J]. Proc Natl Acad Sci U S A,2013,110(26):10741-10746.
[10] Derlin T,Richter U,Bannas P,et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque[J]. J Nucl Med,2010,51(6):862-865.
[11] Li L,Li X,Jia Y,et al. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease:a cross-correlation study with intravascular ultrasound[J]. Eur J Nucl Med Mol Imaging,2018,45(12):2181-2189.
[12] Morbelli S,Fiz F,Piccardo A,et al. Divergent determinants of 18F-NaF uptake and visible calcium deposition in large arteries:relationship with Framingham risk score[J]. Int J Cardiovasc Imaging,2014,30(2):439-447.
[13] Doris MK,Meah MN,Moss AJ,et al. Coronary 18F-fluoride uptake and progression of coronary artery calcification[J]. Circ Cardiovasc Imaging,2020,13(12):e011438.
[14] Bellinge JW,Francis RJ,Lee SC,et al. 18F-sodium fluoride positron emission tomography activity predicts the development of new coronary artery calcifications[J]. Arterioscler Thromb Vasc Biol,2021,41(1):534-541.
[15] Naghavi M,Libby P,Falk E,et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:Part Ⅰ[J]. Circulation,2003,108(14):1664-1672.
[16] Vengrenyuk Y,Carlier S,Xanthos S,et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps[J]. Proc Natl Acad Sci U S A,2006,103(40):14678-14683.
[17] Vengrenyuk Y,Cardoso L,Weinbaum S. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture:cellular microcalcifications in fibrous caps[J]. Mol Cell Biomech,2008,5(1):37-47.
[18] Joshi NV,Vesey AT,Williams MC,et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques:a prospective clinical trial[J]. Lancet,2014,383(9918):705-713.
[19] Wen W,Gao M,Yun M,et al. In?vivo coronary 18F-sodium fluoride?activity:correlations with coronary plaque histological vulnerability and physiological environment[J]. JACC Cardiovasc Imaging,2023,16(4):508-520.
[20] Syed MBJ,Fletcher AJ,Debono S,et al. 18F-sodium fluoride positron emission tomography and computed tomography in acute aortic syndrome[J]. JACC Cardiovasc Imaging,2022,15(7):1291-1304.
[21] Kitagawa T,Yamamoto H,Toshimitsu S,et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis[J]. Atherosclerosis,2017,263:385-392.
[22] Lee JM,Bang JI,Koo BK,et al. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease[J]. Circ Cardiovasc Imaging,2017,10(11):e006704.
[23] Majeed K,Bellinge JW,Butcher SC,et al. Coronary 18F-sodium fluoride PET detects high-risk plaque features on optical coherence tomography and CT-angiography in patients with acute coronary syndrome[J]. Atherosclerosis,2021,319:142-148.
[24] Kwiecinski J,Dey D,Cadet S,et al. Peri-coronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in stable patients with high-risk plaques[J]. JACC Cardiovasc Imaging,2019,12(10):2000-2010.
[25] Oliveira-Santos M,Castelo-Branco M,Silva R,et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects—A subclinical atherosclerosis imaging study with 18F-NaF PET-CT[J]. Atherosclerosis,2017,260:41-46.
[26] Kitagawa T,Nakamoto Y,Fujii Y,et al. Relationship between coronary arterial 18F-sodium fluoride uptake and epicardial adipose tissue analyzed using computed tomography[J]. Eur J Nucl Med Mol Imaging,2020,47(7):1746-1756.
[27] Cury RC,Leipsic J,Abbara S,et al. CAD-RADSTM 2.0 —2022 coronary artery disease-reporting and data system:an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT),the American College of Cardiology (ACC),the American College of Radiology (ACR),and the North America Society of Cardiovascular Imaging (NASCI)[J]. JACC Cardiovasc Imaging,2022,15(11):1974-2001.
[28] Dweck MR,Chow MW,Joshi NV,et al. Coronary arterial 18F-sodium fluoride uptake:a novel marker of plaque biology[J]. J Am Coll Cardiol,2012,59(17):1539-1548.
[29] Takx RAP,van Asperen R,Bartstra JW,et al. Determinants of 18F-NaF uptake in femoral arteries in patients with type 2 diabetes mellitus[J]. J Nucl Cardiol,2021,28(6):2700-2705.
[30] Detrano R,Guerci AD,Carr JJ,et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups[J]. N Engl J Med,2008,358(13):1336-1345.
[31] Budoff MJ,Hokanson JE,Nasir K,et al. Progression of coronary artery calcium predicts all-cause mortality[J]. JACC Cardiovasc Imaging,2010,3(12):1229-1236.
[32] Fletcher AJ,Tew YY,Tzolos E,et al. Thoracic aortic 18F-sodium fluoride activity and ischemic stroke in patients with established cardiovascular disease[J]. JACC Cardiovasc Imaging,2022,15(7):1274-1288.
[33] Moss AJ,Doris MK,Andrews JPM,et al. Molecular coronary plaque imaging using 18F-fluoride[J]. Circ Cardiovasc Imaging,2019,12(8):e008574.
[34] Kwiecinski J,Tzolos E,Adamson PD,et al. Coronary 18F-sodium fluoride uptake predicts outcomes in patients with coronary artery disease[J]. J Am Coll Cardiol,2020,75(24):3061-3074.

更新日期/Last Update: 2024-03-29