[1]金鸿锦,卢义,丁彦春.低氧诱导因子-1在低氧性肺动脉高压中的研究进展[J].心血管病学进展,2024,(1):35.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.010]
 JIN Hongjin,Lu Yi,DING Yanchun.Hypoxia Inducible Factor-1 in Hypoxic Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2024,(1):35.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.010]
点击复制

低氧诱导因子-1在低氧性肺动脉高压中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年1期
页码:
35
栏目:
综述
出版日期:
2024-02-21

文章信息/Info

Title:
Hypoxia Inducible Factor-1 in Hypoxic Pulmonary Hypertension
作者:
金鸿锦卢义丁彦春
(大连医科大学附属第二医院,辽宁 大连 116021)
Author(s):
JIN HongjinLu YiDING Yanchun
(The Second Hospital of Dalian Medical University, Dalian 116021, Liaoning, China)
关键词:
低氧性肺动脉高压低氧诱导因子-1低氧性肺血管重塑
Keywords:
Hypoxic pulmonary hypertension Hypoxia inducible factor-1 Hypoxic pulmonary vascular remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2024.01.010
摘要:
低氧性肺动脉高压(HPH)是由缺氧引起的肺动脉压力进行性升高的肺血管疾病。低氧诱导因子-1(HIF-1)是维持细胞氧稳态的核心转录因子,可促进细胞糖代谢模式的转变、调节细胞膜表面离子通道活性、调节肺血管收缩及舒张因子活性等,在HPH的发生和发展中具有重要作用。现对HIF-1及其下游信号分子在HPH发生和发展中的作用机制进行综述,有助于为HPH的治疗提供新的理论依据和治疗靶点。
Abstract:
Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease resulted from progressive increase in pulmonary arterial pressure caused by hypoxia. Hypoxia inducible factor-1 (HIF-1) is a core transcription factor which maintains cell oxygen homeostasis,promotes the transformation of glucose metabolism patterns,regulates the activity of the icon channel on the membrane surface and the pulmonary vasoconstriction and relaxation factors,which plays an important role in the occurrence and development of HPH. This review aims to investigate the mechanism of HIF-1 and its downstream signaling molecules in the occurrence and development of HPH,which will provide new theoretical basis and therapeutic target for the treatment of HPH

参考文献/References:

[1] Moreno-Domínguez A,Colinas O,Smani T,et al. Acute oxygen sensing by vascular smooth muscle cells[J]. Front physiol,2023,14:1142354.

[2] Rani S,Roy S,Singh M,et al. Regulation of transactivation at C-TAD domain of HIF-1α by factor-inhibiting HIF-1α (FIH-1):a potential target for therapeutic intervention in cancer[J]. Oxid Med Cell Longev,2022,2022:2407223.

[3] Georgy M,Salhiyyah K,Yacoub MH,et al. Role of hypoxia inducible factor HIF-1 α in heart valves[J]. Glob Cardiol Sci Pract,2023,2023(2):e202309.

[4] Thompson AAR,Lawrie A. Targeting vascular remodeling to treat pulmonary arterial hypertension[J]. Trends Mol Med,2017,23(1):31-45.

[5] Taylor CT,Scholz CC. The effect of HIF on metabolism and immunity[J]. Nat Rev Nephrol,2022,18(9):573-587.

[6] 杨雪,杨勇. 代谢重编程对巨噬细胞的可塑性和功能的影响[J]. 药学研究,2019,38(8):481-485.

[7] Zeidan EM,Hossain MA,El-Daly M,et al. Mitochondrial regulation of the hypoxia-inducible factor in the development of pulmonary hypertension[J]. J Clin Med,2022,11(17):5219.

[8] Canton M,Sánchez-Rodríguez R,Spera I,et al. Reactive oxygen species in macrophages:sources and targets[J]. Front Immunol,2021,12:734229.

[9] Chen J,Zhang M,Liu Y,et al. Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension[J]. J Mol Cell Biol,2023,14(12):mjac073.

[10] Kao TW,Bai GH,Wang TL,et al. Novel cancer treatment paradigm targeting hypoxia-induced factor in?conjunction with current therapies to overcome resistance[J]. J Exp Clin Cancer Res,2023,42(1):171.

[11] Riou M,Enache I,Sauer F,et al. Targeting mitochondrial metabolic dysfunction in pulmonary hypertension:toward new therapeutic approaches?[J]. Int J Mol Sci,2023,24(11):9572.

[12] Thenappan T,Ormiston ML,Ryan JJ,et al. Pulmonary arterial hypertension:pathogenesis and clinical management[J]. BMJ,2018,360:j5492.

[13] Kassa B,Kumar R,Mickael C,et al. Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2021,321(4):L675-L685.

[14] Cao Y,Zhang X,Wang L,et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension[J]. Proc Natl Acad Sci U S A,2019,116(27):13394-13403.

[15] Jaworska M,Szczud?o J,Pietrzyk A,et al. The Warburg effect:a score for many instruments in the concert of cancer and cancer niche cells[J]. Pharmacol Rep,2023,75(4):876-890.

[16] Xiao Y,Peng H,Hong C,et al. PDGF promotes the Warburg effect in pulmonary arterial smooth muscle cells via activation of the PI3K/AKT/mTOR/HIF-1α signaling pathway[J]. Cell Physiol Biochem,2017,42(4):1603-1613.

[17] Thomas LW,Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria[J]. Cell Mol Life Sci,2019,76(9):1759-1777.

[18] Breault NM,Wu D,Dasgupta A,et al. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension[J]. Front Cell Dev Biol,2023,11:1105565.

[19] Whitman E,Pisarcik S,Luke T,et al. Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes[J]. Am J Physiol Lung Cell Mol Physiol,2008,294(2):L309- L318.

[20] He Y,Fang X,Shi J,et al. Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1alpha-KV1.5 channel pathway[J]. Chem Biol Interact,2020,317:108942.

[21] Masson B,Montani D,Humbert M,et al. Role of store-operated Ca2+ entry in the pulmonary vascular remodeling occurring in pulmonary arterial hypertensio n[J]. Biomolecules,2021,11(12):1781.

[22] Masson B,Saint-Martin Willer A,Dutheil M,et al. Contribution of TRPC channels in human and experimental pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2023,325(2):L246-L261.

[23] Jain PP,Lai N,Xiong M,et al. TRPC6,a therapeutic target for pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2021,321(6):L1161-L1182.

[24] Wang J,Fu X,Yang K,et al. Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs[J]. Cardiovasc Res,2015,107(1):108-118.

[25] Chai T,Qiu C,Xian Z,et al. A narrative review of research advances in hypoxic pulmonary hypertension[J]. Ann Transl Med,2022,10(4):230.

[26] Maron BA,Abman SH,Elliott CG,et al. Pulmonary arterial hypertension:diagnosis,treatment,and novel advances[J]. Am J Respir Crit Care Med,2021,203(12):1472-1487.

[27] Liu R,Yuan T,Wang R,et al. Insights into endothelin receptors in pulmonary hypertension[J]. Int J Mol Sci,2023,24(12):10206.

[28] Pisarcik S,Maylor J,Lu W,et al. Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1[J]. Am J Physiol Lung Cell Mol Physiol,2013,304(8):L549-L561.

[29] Pullamsetti SS,Mamazhakypov A,Weissmann N,et al. Hypoxia-inducible factor signaling in pulmonary hypertension[J]. J Clin Invest,2020,130(11):5638-5651.

[30] 刘川川,马兰,格日力. HIF-1调控低氧性肺动脉高压[J]. 生理科学进展,2018,49(6):423-427.

[31] Li B,Zhu Y,Sun Q,et al. Reversal of the Warburg effect with DCA in PDGF?treated human PASMC is potentiated by pyruvate dehydrogenase kinase?1 inhibition mediated through blocking Akt/GSK?3β signalling [J]. Int J Mol Med,2018,42(3):1391-1400.

[32] Wang XY,Mo D,Tian W,et al. Inhibition of RhoA/ROCK signaling pathway ameliorates hypoxic pulmonary hypertension via HIF-1α-dependent functional TRPC channels[J]. Toxicol Appl Pharmacol,2019,369:60-72.

[33] Sun XZ,Li SY,Tian XY,et al. Effect of Rho kinase inhibitor fasudil on the expression ET-1 and NO in rats with hypoxic pulmonary hypertension[J]. Clin Hemorheol Microcirc,2019,71(1):3-8.

[34] Jiang Y,Zhou Y,Peng G,et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1α and TRPC channels[J]. Int J Biochem Cell Biol,2018,104:161-170.

[35] Dai Y,Chen X,Song X,et al. Immunotherapy of endothelin-1 receptor type A for pulmonary arterial hypertension[J]. J Am Coll Cardiol,2019,73(20):2567-2580.

[36] Cullivan S,Higgins M,Gaine S. Diagnosis and management of pulmonary arterial hypertension[J]. Breathe (Sheff),2022,18(4):220168.

更新日期/Last Update: 2024-03-06