[1]李翠兰 李旭 郭保静 王福军 梁璐 蒋勇 高元丰 李蕾 胡大一 刘文玲.3型长QT综合征基因突变型与表型关系分析[J].心血管病学进展,2023,(9):853.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.020]
 LI Cuilan,Li Xu,GUO Baojing,et al.Mutation-Specific Genotype-Phenotype Correlations in Six Chinese Families with Long QT Syndrome Type 3[J].Advances in Cardiovascular Diseases,2023,(9):853.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.020]
点击复制

3型长QT综合征基因突变型与表型关系分析()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年9期
页码:
853
栏目:
论著
出版日期:
2023-09-25

文章信息/Info

Title:
Mutation-Specific Genotype-Phenotype Correlations in Six Chinese Families with Long QT Syndrome Type 3
作者:
李翠兰1 李旭1 郭保静2 王福军3 梁璐4 蒋勇3 高元丰5 李蕾1 胡大一1 刘文玲1
(1.北京大学人民医院心内科,北京 100044 ;2.首都医科大学附属北京安贞医院小儿心脏中心心内科,北京 100029 ;3.湘西土家族苗族自治州人民医院心内科,湖南吉首 416000 ;4.首都儿科研究所小儿心脏病科,北京 100020 ;5.首都医科大学附属北京朝阳医院心脏中心,北京100020)
Author(s):
LI Cuilan1Li Xu 1 GUO Baojing2 WANG Fujun3 LIANG Lu4 JIANG Yong3 GAO Yuanfeng5 LI Lei1 HU Da-yi1 LIU Wenling1
?1. Heart Center,Peking University Peoples Hospital, Beijing 100044,China;2. Department of Pediatric Heart Center,Beijing Anzhen Hospital,Capital Medical University,Beijing 100029,China;3. Department of Cardiology,Peoples Hospital of Xiangxi Tujia and Miao Autonomous Prefecture,Jishou 416000,Hunan,China;4. Division of Pediatric Cardiology,Capital Institute of Pediatrics,Beijing 100020,China; 5. Heart Center,Beijing Chaoyang Hospital,Capital Medical University,Beijing 100020,China)
关键词:
3型长QT综合征SCN5A基因突变基因型-表型关系
Keywords:
Long QT syndrome type 3 SCN5A gene mutation Genotype-phenotype correlation
DOI:
10.16806/j.cnki.issn.1004-3934.2023.09.020
摘要:
目的 目前已发现至少17个先天性长QT综合征(LQTS)亚型,其中3型(LQT3)检出率约5%10%,占第三位。该型人数虽不是很多,但由于症状严重、发生猝死的风险高而备受关注。本文拟探讨中国LQT3患者特定突变型与表型的关系。方法 共入组6例2001年4月—2014年7月诊断为LQT3的先证者。用新一代靶向技术和直接测序法或全外显子测序法检测到SCN5A基因上的突变。对携带特定突变的先证者及其受累亲属进行突变型和表型分析。结果 共检出SCN5A上的5个致病突变(V411M,P1332L,F1473S,R1644H和delD1790)。表型分析显示,多数先证者具有典型的LQT3型ECG特点,美西律治疗有效。2例携带V411M突变的无关联先证者均表现为窦性心动过速,且不能被β阻滞剂抑制。携带P1332L突变的先证者表现出类似LQT2型的ECG模式,对美西律敏感。1例携带F1473S突变的患者在出生不久即发生了首次心脏事件,美西律无效,2.5岁时发生猝死。携带纯合R1644H突变的患者ECG上表现为基底部宽大的倒置T波,足量美西律治疗后可使ECG完全正常化。另外观察到位于C末端的delD1790突变引起致死性事件的风险低。结论 LQT3患者发生心脏事件的风险与其携带突变位置及是否在出生后第一年内有症状有关。这些发现为进一步研究国人LQT3患者的基因突变型与表型关系提供了更多的证据。
Abstract:
Background Congenital long QT syndrome type 3 (LQT3) is the third in frequency among 17 currently known forms of congenital long QT syndrome (LQTS). This study aimed to explore the mutation-specific genotype-phenotype correlations in Chinese patients with LQT3. Methods We enrolled six probands with a clinical diagnosis of LQT3 between 2001 and 2014. Mutations were identified by direct sequencing and targeted next-generation/whole-exome sequencing. Phenotypes of the probands with certain mutations and their affected relatives were evaluated. Results Five pathogenic mutations (V411M, P1332L, F1473S, R1644H and delD1790) were identified in SCN5A. Phenotype analysis showed that most probands had typical LQT3 electrocardiogram (ECG) patterns and could be protected by mexiletine therapy. The V411M mutation in two unrelated probands might be associated with sinus tachycardia,which could not be suppressed by β-blockers. The proband carrying the P1332L mutation showed an LQT2-like ECG pattern and was sensitive to mexiletine. One patient carrying F1473S who had her first cardiac event in the first year of life died at the age of 2.5 years. Broad base inverted T waves were observed in the patient carrying the homozygous R1644H missense mutation that was normalized by mexiletine. Additionally, the delD1790 mutation localized in the C-terminus confers a lower risk for life-threatening events. Conclusion The risk of cardiac events in LQT3 patients varies according to the location of the mutation and symptoms in the first year of life. This study broadens the genotype–phenotype spectra of LQT3 patients in China

参考文献/References:

[1] Schwartz PJ,Stramba-Badiale M,Crotti L,et al. Prevalence of the congenital long-QT syndrome[J]. Circulation,2009,120(18):1761-1767.

[2] 李翠兰,高元丰,刘文玲. 长QT综合征分子遗传学进展及国人基因变异汇总[J]. 临床心血管病杂志,2023;39(3):176-181.

[3] Gibbs C,Thalamus J,Tveten K,et al. Genetic and phenotypic characterization of community hospital patients with QT prolongation[J]. J Am Heart Assoc,2018;7(16):e009706.

[4] Wallace E,Howard L,Liu M,et al. Long QT syndrome:genetics and future perspective[J]. Pediatr Cardiol,2019,40(7):1419-1430.

[5] Wilde AAM,Amin A. Channelopathies,genetic testing and risk stratification[J]. Int J Cardiol,2017,237:53-55.

[6] Baruteau AE,Kyndt F,Behr ER,et al. SCN5A mutations in 442 neonates and children:genotype-phenotype correlation and identification of higher-risk subgroups[J]. Eur Heart J,2018,39(31):2879-2887.

[7] Zhang L,Timothy KW,Vincent GM,et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome:ECG findings identify genotypes[J]. Circulation,2000,102(23):2849-2855.

[8] Li G,Zhang L. The role of mexiletine in the management of long QT syndrome[J]. J Electrocardiol,2018,51(6):1061-1065.

[9] Zareba W,Moss AJ,Locati EH,et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype[J]. J Am Coll Cardiol,2003,42(1):103-109.

[10] Zimmer T,Surber R. SCN5A channelopathies--an update on mutations and mechanisms[J]. Prog Biophys Mol Biol,2008,98(2-3):120-136.

[11] Schwartz PJ,Moss AJ,Vincent GM,et al. Diagnostic criteria for the long QT syndrome. An update. Circulation,1993;88(2):782-784.

[12] Kapplinger JD,Giudicessi JR,Ye D,et al. Enhanced classification of brugada syndrome-associated and long-QT syndrome-associated genetic variants in the SCN5A-encoded Na v1.5 cardiac sodium channel[J]. Circ Cardiovasc Genet,2015,8(4):582-595.

[13] Shimizu W,Makimoto H,Yamagata K,et al. Association of genetic and clinical aspects of congenital long QT syndrome with life-threatening arrhythmias in Japanese patients[J]. JAMA Cardiol,2019,4(3):246-254.

[14] Yokoyama Y,Aiba T,Ueda N,et al. Subcutaneous and transvenous implantable cardioverter defibrillator in high-risk long-QT syndrome type 3 associated with Val411Met mutation in SCN5A[J]. J Cardiol Cases,2020,22(5):238-241.

[15] Wilde AAM,Amin AS. Clinical spectrum of SCN5A mutations:long QT syndrome,Brugada syndrome,and cardiomyopathy[J]. JACC Clin Electrophysiol,2018,4(5):569-579.

[16] Blich M,Khoury A,Suleiman M,et al. Specific therapy based on the genotype in a malignant form of long QT3,carrying the V411M mutation[J]. Int Heart J,2019,60(4):979-982.

[17] Pérez-Riera AR,Barbosa-Barros R,Daminello Raimundo R,et al. The congenital long QT syndrome Type 3:An update[J]. Indian Pacing Electrophysiol J,2018,18(1):25-35.

[18] El-Sherif N,Turitto G,Boutjdir M. Congenital long QT syndrome and torsade de pointes[J]. Ann Noninvasive Electrocardiol,2017,22(6):e12481.

[19] Ruan Y,Liu N,Bloise R,et al. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients[J]. Circulation,2007,116(10):1137-1144.

[20] Liu J,Bayer JD,Aschar-Sobbi R,et al. Complex interactions in a novel SCN5A compound mutation associated with long QT and Brugada syndrome:implications for Na+ channel blocking pharmacotherapy for de novo conduction disease[J]. PLoS One,2018,13(5):e0197273.

[21] Zareba W. Genotype-specific ECG patterns in long QT syndrome[J]. J Electrocardiol,2006,39(4 Suppl):S101-S106.

[22] Schulze-Bahr E,Fenge H,Etzrodt D,et al. Long QT syndrome and life threatening arrhythmia in a newborn:molecular diagnosis and treatment response[J]. Heart,2004,90(1):13-16.

[23] Kehl HG,Haverkamp W,Rellensmann G,et al. Images in cardiovascular medicine. Life-threatening neonatal arrhythmia:successful treatment and confirmation of clinically suspected extreme long QT-syndrome-3[J]. Circulation,2004,109(18):e205-206.

[24] Ruan Y,Denegri M,Liu N,et al. Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3[J]. Circ Res,2010,106(8):1374-1383.

[25] Zhu W,Mazzanti A,Voelker TL,et al. Predicting patient response to the antiarrhythmic mexiletine based on genetic variation[J]. Circ Res,2019,124(4):539-552.

[26] Wang DW,Yazawa K,George AL Jr,et al. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome[J]. Proc Natl Acad Sci U S A,1996,93(23):13200-13205.

[27] Nieto-Mar ín P,Jiménez-Jáimez J,Tinaquero D,et al. Digenic heterozigosity in SCN5A and CACNA1C explains the variable expressivity of the long QT phenotype in a Spanish family[J]. Rev Esp Cardiol (Engl Ed),2019,72(4):324-332.

[28] Malan D,Zhang M,Stallmeyer B,et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction[J]. Basic Res Cardiol,2016,111(2):14.

[29] Murphy LL,Moon-Grady AJ,Cuneo BF,et al. Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia[J]. Heart Rhythm,2012,9(4):590-597.

[30] Moore JP,Gallotti RG,Shannon KM,et al. Genotype predicts outcomes in fetuses and neonates with severe congenital long QT syndrome[J]. JACC Clin Electrophysiol,2020,6(12):1561-1570.

[31] Horigome H,Nagashima M,Sumitomo N,et al. Clinical characteristics and genetic background of congenital long-QT syndrome diagnosed in fetal,neonatal,and infantile life:a nationwide questionnaire survey in Japan[J]. Circ Arrhythm Electrophysiol,2010,3(1):10-17.

[32] Schwartz PJ,Spazzolini C,Crotti L. All LQT3 patients need an ICD:true or false?[J]. Heart Rhythm,2009,6(1):113-120.

更新日期/Last Update: 2023-10-17