[1]李梦依 刘英杰 齐灵垚 秦地茂.孟德尔随机化探讨三甲胺N-氧化物及其前体与静脉血栓栓塞的因果关系[J].心血管病学进展,2023,(8):764.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.020]
 Li Mengyi,Liu YingjieQi LingyaoQin Dimao.Mendelian Randomization Exploring the Causality of Trimethylamine N-oxide and Its Precursors with Venous Thromboembolism[J].Advances in Cardiovascular Diseases,2023,(8):764.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.020]
点击复制

孟德尔随机化探讨三甲胺N-氧化物及其前体与静脉血栓栓塞的因果关系()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年8期
页码:
764
栏目:
论著
出版日期:
2023-08-25

文章信息/Info

Title:
Mendelian Randomization Exploring the Causality of Trimethylamine N-oxide and Its Precursors with Venous Thromboembolism
作者:
李梦依 刘英杰 齐灵垚 秦地茂
(西南交通大学附属医院 成都市心血管病研究所,四川 成都 610031)
Author(s):
Li MengyiLiu YingjieQi LingyaoQin Dimao
(Cardiovascular Diseases Research Institute of Chengdu,The Third People’s Hospital of Chengdu,The Affiliated Hospital of Southwest Jiaotong University,School of Medicine,Chengdu 610031,Sichuan,China)
关键词:
三甲胺N-氧化物胆碱静脉血栓栓塞深静脉血栓形成肺栓塞孟德尔随机化
Keywords:
Trimethylamine N-oxide Choline Venous thromboembolism Deep vein thrombosis Mendelian randomization
DOI:
10.16806/j.cnki.issn.1004-3934.2023.08.020
摘要:
目的 越来越多的研究关注三甲胺N-氧化物(TMAO)及其前体与静脉血栓栓塞VTE)的关系,但在已发表的研究中,二者之间的联系尚不清楚。因此,本研究采用两样本孟德尔随机化(MR)来探讨TMAO及其前体与VTE[包括深静脉血栓形成(DVT)和肺栓塞]风险的因果关系。方法 TMAO及其前体、DVT和肺栓塞的汇总统计数据来自多个全基因组关联研究。主要分析采用逆方差加权法,其他四种敏感性分析方法作为补充(MR Egger、MR多效性残差和异常值检验、最大似然比法和加权中值法)。最后,使用Bonferroni进行校正,当P值在0.0125(0.05除以4个危险因素)和0.05之间时,考虑TMAO和VTE存在潜在的相关性。结果 基因预测显示:TMAO浓度每增加1个单位,DVT的相对风险就会增加0.08%(OR=1.000 8,95%CI 1.000 4~1.001 2,P=0.001 3),胆碱浓度每增加1个单位,则DVT的相关风险可能会增加0.06%(OR=1.000 6,95%CI 1.000 1~1.001 2, P=0.042 0)。结论 该MR研究支持TMAO和胆碱对DVT的潜在因果效应,表明降低TMAO和胆碱的水平可能降低DVT风险。
Abstract:
?Objective Recently,although more and more researchers have focused on the relationship of trimethylamine N-oxide(TMAO) and its precursors with venous thromboembolism(VTE),the association between them in previous studies remains unclear. Therefore,a two-sample Mendelian randomization(MR) was used to explore a causal association of TMAO and its precursors with VTE risk,including deep vein thrombosis(DVT) and pulmonary embolism. Methods In this study,summary statistics of TMAO and its precursors,DVT,and pulmonary embolism were obtained from several extensive genome-wide association studies. Our primary analyses were conducted by inverse variance weighted method,complementary with the other four sensitivity analysis(MR Egger,MR pleiotropy residual sum and outlier test,Maximum likelihood,and weighted median). Finally,the Bonferroni corrected significance level with P<0.0125(0.05 divided by 4 risk factors) was used,and a?potential association?was considered?when?theP-value was between 0.0125 and?0.05.Results Gene prediction reported that for every 1 unit increase in TMAO concentrations,the relative risk of DVT increased by 0.08%(OR=1.000 8,95% CI 1.000 4~1.001 2,P=0.001 3) and for every 1 unit increase in choline concentrations,the relative risk of DVT may increase by 0.06%(OR=1.000 6,95% CI 1.000 1~1.001 2,P=0.042 0). Conclusion This MR analysis supports a potential causal effect of TMAO and choline on DVT,suggesting lowering their levels may reduce DVT risk

参考文献/References:

[1] van Schouwenburg IM,Gansevoort RT,Mahmoodi BK,et al.?Increased risk of arterial thromboembolism after a prior episode of venous thromboembolism:results from the Prevention of Renal and Vascular end stage Disease PREVEND,Study[J].?Br J Haematol,2012,159(2):216-222.

[2] Naess IA,Christiansen SC,Romundstad P,et al. Incidence and mortality of venous thrombosis:a population-based study[J].?J Thromb Haemost,2007,5(4):692-699.

[3] Silverstein MD,Heit JA,Mohr DN,et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism:a 25-year population-based study[J].?Arch Intern Med,1998,158(6):585-593.

[4] Klemen ND,Feingold PL,Hashimoto B,et al. Mortality risk associated with venous thromboembolism:a systematic review and Bayesian meta-analysis[J].?Lancet Haematol,2020,7(8):e583-e593.

[5] Cohen AT,Agnelli G,Anderson FA,et al. Venous thromboembolism VTE,in Europe. The number of VTE events and associated morbidity and mortality[J].?Thromb Haemost,2007,98(4):756-764.

[6] White RH. The epidemiology of venous thromboembolism[J].?Circulation,2003,107(1):I4-I8.

[7] Spencer FA,Gore JM,Lessard D,et al. Patient outcomes after deep vein thrombosis and pulmonary embolism:the Worcester Venous Thromboembolism Study[J].?Arch Intern Med,2008,168(4):425-430.

[8] Mensah GA,Roth GA,Fuster V. The Global Burden of Cardiovascular Diseases and Risk?Factors:2020 and Beyond[J].?J Am Coll Cardiol,2019,74(20):2529-2532.

[4] Floch MH. Intestinal microecology in health and wellness[J].?J Clin Gastroenterol,2011,45(supp 1):108-S110.

[9] Kiouptsi K,Reinhardt C. Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis[J].?Br J Pharmacol,2018,175(24):4439-4449.

[10] Dunzendorfer S,Lee HK,Tobias PS. Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity[J].?Circ Res,2004,95(7):684-691.

[11] Andonegui G,Kerfoot SM,McNagny K,et al. Platelets express functional Toll-like receptor-4[J].?Blood,2005,106(7):2417-2423.

[12] Dauphinee SM,Karsan A. Lipopolysaccharide signaling in endothelial cells[J].?Lab Invest, 2006 ,86(1):9-22.

[13] Zhu W,Gregory JC,Org E,et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J].?Cell,2016,165(1):111-124.

[14] Komatsu S,Berg RD,Russell JM,et al. Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells[J].?Am J Physiol Gastrointest Liver Physiol,2000,279(1):G186-G191.

[15] J?ckel S,Kiouptsi K,Lillich M,et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2[J]. Blood,2017,130(4):542-553.

[16] Burgess S,Butterworth A,Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J].?Genet Epidemiol,2013,37(7):658-665.

[17] Smith GD,Ebrahim S. ’Mendelian randomization’:can genetic epidemiology contribute to understanding environmental determinants of disease? [J].?Int J Epidemiol,2003,32(1):1-22.

[18] Davies NM,Holmes MV,Davey Smith G. Reading Mendelian randomisation studies:a guide,glossary,and checklist for clinicians[J].?BMJ,2018,362:k601.

[19] RRhee EP,Ho JE,Chen MH,et al. A genome-wide association study of the human metabolome in a community-based cohort[J].?Cell Metab,2013,18(1):130-143.

[20] Hemani G,Zheng J,Elsworth B,et al. The MR-Base platform supports systematic causal inference across the human phenome[J].?Elife,2018,7:e34408.

[21] Palmer TM,Lawlor DA,Harbord RM,et al. Using multiple genetic variants as instrumental variables for modifiable risk factors[J].?Stat Methods Med Res,2012,21(3):223-242.

[22] Yang J,Ferreira T,Morris AP,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits[J].?Nat Genet,2012,44(4):369-S3.

[23] Ren W,Liang Z,He S,et al. Hybrid of restricted and penalized maximum likelihood method for efficient genome-wide association study[J]. Genes(Basel),2020,11(11):1286.

[24] Bowden J,Davey Smith G,Burgess S. Mendelian randomization with invalid instruments:effect estimation and bias detection through Egger regression[J].?Int J Epidemiol,2015,44(2):512-525.

[25] Bowden J,Davey Smith G,Haycock PC,et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J].?Genet Epidemiol,2016,40(4):304-314.

[26] Verbanck M,Chen CY,Neale B,et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J].?Nat Genet,2018,50(5):693-698.

[27] Burgess S,Thompson SG. Erratum to:interpreting findings from Mendelian randomization using the MR-Egger method[J].?Eur J Epidemiol,2017,32(5):391-392.

[28] Tripathi A,Debelius J,Brenner DA,et al. The gut-liver axis and the intersection with the microbiome[J].?Nat Rev Gastroenterol Hepatol,2018,15(7):397-411.

[29] Zhu W,Wang Z,Tang WHW,et al. Gut microbe-generated trimethylamine?N-oxide from dietary choline is prothrombotic in subjects[J].?Circulation,2017,135(17):1671-1673.

[30] Wang Z,Klipfell E,Bennett BJ,et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J].?Nature,2011,472(17):57-63.

[31] Qiao J,Arthur JF,Gardiner EE,et al. Regulation of platelet activation and thrombus formation by reactive oxygen species[J].?Redox Biol,2018,14:126-130.

[32] Seldin MM,Meng Y,Qi H,et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB[J].?J Am Heart Assoc,2016,5(2):e002767.

[33] Chen ML,Zhu XH,Ran L,et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J].?J Am Heart Assoc,2017,6(11):e006347.

[34] Bennett JA,Mastrangelo MA,Ture SK,et al. The choline transporter Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial function[J].?Nat Commun,2020,11(1):3479.

更新日期/Last Update: 2023-09-21