参考文献/References:
[1] Heidenreich PA,Bozkurt B,Aguilar D,et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure:Executive Summary:A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation,2022,145(18):e876-e894.
[2] Cefalu WT,Leiter LA,de Bruin TWA,et al. Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes:a 24-week,multicenter,randomized,double-blind,placebo-controlled study with a 28-week extension[J]. Diabetes Care,2015,38(7):1218-1227.
[3] Mazidi M,Rezaie P,Gao HK,et al. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus:a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients[J]. J Am Heart Assoc,2017,6(6):e004007.
[4] Zinman B,Wanner C,Lachin JM,et al. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med,2015,373(22):2117-2128.
[5] Zhao Y,X u L,T ian D,et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level:a meta-analysis of randomized controlled trials[J]. Diabetes Obes Metab,2018,20(2):458- 462.
[6] Nasiri-Ansari N,D imitriadis GK,A grogiannis G,et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice[J]. Cardiovasc Diabetol,2018,17(1):106.
[7] Leng W,O uyang X,L ei X,et al. The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE-/- mice[J]. Mediators Inflamm,2016,2016:6305735.
[8] D’Onofrio N,Sardu C,T rotta MC,et al. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques:effects of sodium-glucose co-transporter2 inhibitor treatment[J]. Mol Metab,2021,54:101337.
[9] Neal B,P erkovic V,M ahaffey KW,et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(7):644-657.
[10] Wiviott SD,R az I,B onaca MP,et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med,2019,380(4):347-357.
[11] Cannon CP,P ratley R,D agogo JS,et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes[J]. N Engl J Med,2020,383(15):1425-1435.
[12] Khunti K,Kosiborod M,K im DJ,et al. Cardiovascular outcomes with sodium-glucose cotransporter-2 inhibitors vs other glucose-lowering drugs in 13 countries across three continents:analysis of CVD-REAL data[J]. Cardiovasc Diabetol,2021,20(1):159.
[13] Birkeland KI,J?rgensen ME,Carstensen B,et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic):a multinational observational analysis[J]. Lancet Diabetes Endocrinol,2017,5(9):709-717.
[14] Tripolt NJ,Kolesnik E,Pferschy PN,et al. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction—The EMMY trial[J]. Am Heart J,2020,221:39-47.
[15] Udell JA,J ones WS,P etrie MC,et al. Sodium glucose cotransporter-2 inhibition for acute myocardial infarction:JACC review topic of the week[J]. J Am Coll Cardiol,2022,79(20):2058-2068.
[16] Shimizu W,K ubota Y,H oshika Y,et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus:the EMBODY trial[J]. Cardiovasc Diabetol,2020,19(1):148.
[17] Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors[J]. Diabetes Obes Metab,2019,21 Suppl 2:34-42.
[18] Bhatt DL,Szarek M,Steg PG,et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure[J]. N Engl J Med,2021,384(2):117-128.
[19] McMurray JJV,Solomon SD,Inzucchi SE,et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med,2019,381(21):1995-2008.
[20] Packer M,Anker SD,Butler J,et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med,2020,383(15):1413-1424.
[21] Cunningham JW,Vaduganathan M,Claggett BL,et al. Dapagliflozin in patients recently hospitalized with heart failure and mildly reduced or preserved ejection fraction[J]. J Am Coll Cardiol,2022,80(14):1302-1310.
[22] Anker SD,Butler J,Filippatos G,et al. Empagliflozin in heart failure with a preserved ejection fraction[J]. N Engl J Med,2021,385(16):1451-1461.
[23] Jaswal JS,Keung W,Wang W,et al. Targeting fatty acid and carbohydrate oxidation—A novel therapeutic intervention in the ischemic and failing heart[J]. Biochim Biophys Acta,2011,1813(7):1333-1350.
[24] Horton JL,Davidson MT,Kurishima C,et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense[J]. JCI Insight,2019,4(4):e124079.
[25] Selvaraj S,Kelly DP,Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure[J]. Circulation,2020,141(22):1800-1812.
[26] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates adverse left?ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2019,73(15):1931-1944.
[27] Verma S,Rawat S,Ho KL,et al. Empagliflozin increases cardiac energy?production?in diabetes:novel translational insights into the heart failure benefits?of?SGLT2 inhibitors[J]. JACC Basic Transl Sci,2018,3(5):575-587.
[28] Liu Y,Wu M,Xu B,et al. Empagliflozin alleviates atherosclerosis progression by inhibiting inflammation and sympathetic activity in a normoglycemic mouse model[J]. J Inflamm Res,2021,14:2277-2287.
[29] Yu YW,Que JQ,Liu S,et al. Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy[J]. Front Cardiovasc Med,2021,8:768214.
[30] Li X,R?mer G,Kerindongo RP,et al. Sodium glucose co-transporter 2 inhibitors ameliorate endothelium barrier dysfunction induced by cyclic stretch through inhibition of reactive oxygen species[J]. Int J Mol Sci,2021,22(11):6044.
[31] Ma L,Zou R,Shi W,et al. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways[J]. Theranostics,2022,12(11):5034-5050.
[32] Zou R,Shi W,Qiu J,et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis[J]. Cardiovasc Diabetol,2022,21(1):106.
[33] Zhang Y,Lin X,Chu Y,et al. Dapagliflozin:a sodium-glucose cotransporter 2 inhibitor,attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J]. Cardiovasc Diabetol,2021,20(1):121.
[34] Packer M. Molecular,cellular,and clinical evidence that sodium-glucose cotransporter 2 inhibitors act as neurohormonal antagonists when used for the treatment of chronic heart failure[J]. J Am Heart Assoc,2020,9(16):e016270.
[35] Lahnwong S,Palee S,Apaijai N,et al. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury[J]. Cardiovasc Diabetol,2020,19(1):91.
[36] Maruyama T,Takashima H,Oguma H,et al. Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease[J]. Diabetes Technol Ther,2019,21(12):713-720.
[37] Uthman L,Nederlof R,Eerbeek O,et al. Delayed ischaemic contracture onset by empagliflozin associates with NHE1 inhibition and is dependent on insulin in isolated mouse hearts[J]. Cardiovasc Res,2019,115(10):1533-1545.
相似文献/References:
[1]赵航 汪立杰 金元哲.血流储备分数在冠心病特殊人群中的临床应用进展[J].心血管病学进展,2020,(12):1272.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.012]
ZHAO Hang,WANG L ijie,JIN Yuanzhe.Clinical Application Advances of Fractional Flow Reserve in Special Populations with Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2020,(8):1272.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.012]
[2]方舟 羊镇宇.定量血流分数的临床应用及研究进展[J].心血管病学进展,2021,(3):262.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.017]
FANG ZhouYANG Zhenyu.Clinical Application and Research Progress of Quantitative Flow Ratio[J].Advances in Cardiovascular Diseases,2021,(8):262.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.017]
[3]胥日,羊镇宇.冠状动脉非阻塞性心肌梗死的发病机制[J].心血管病学进展,2021,(2):148.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.014]
XU Ri,YANG Zhenyu.Pathogenesis and Imaging Manifestations of Myocardial Infarction with Non-obstructive Coronary Arteries[J].Advances in Cardiovascular Diseases,2021,(8):148.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.014]
[4]方杰 李春梅 林薿 苏叶 陈丽君 李爽 邓燕 尹立雪 吴志霞.心肌增强多巴酚丁胺负荷超声心动图定量评价冠心病心肌灌注的临床研究[J].心血管病学进展,2021,(8):742.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.017]
FANG Jie,LI Chunmei,LIN Ni,et al.Quantitative Evaluation of Myocardial Perfusion in Coronary Heart Disease by Myocardial Contrast and Dobutamine Stress Echocardiography[J].Advances in Cardiovascular Diseases,2021,(8):742.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.017]
[5]赵润涛 王凡 单冬凯 杨俊杰.CT心肌灌注概述及临床应用进展[J].心血管病学进展,2021,(12):1101.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.011]
ZHAO Runtao WANG Fan SHAN Dongkai?YANG Junjie.CT Myocardial Perfusion and Clinical Application[J].Advances in Cardiovascular Diseases,2021,(8):1101.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.011]
[6]蒋梦婷 张瑜 高磊.髓系细胞触发受体-1在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2023,(4):345.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.013]
JIANG Mengting,ZHANG Yu,GAO Lei.Triggering Receptor Expressed on Myeloid Cells-1 in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2023,(8):345.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.013]
[7]纪欣强 单冬凯 王凡 赵润涛 杨俊杰.CT及其衍生技术评价冠状动脉钙化病变的研究进展[J].心血管病学进展,2024,(3):229.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.009]
JI Xinqiang,SHAN Dongkai,WANG Fan,et al.Evaluation of Coronary Artery Calcification Using CT and Its Derivative Techniques[J].Advances in Cardiovascular Diseases,2024,(8):229.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.009]