参考文献/References:
[1] 国家心血管病中心.《中国心血管健康与疾病报告》2020[J]. 心肺血管病杂志,2021,40(10):1005-1009.
[2] Murry CE,Jennings RB,Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation,1986,74(5):1124-1136.
[3] Braunwald E,Kloner RA. The stunned myocardium:prolonged,postischemic ventricular dysfunction[J]. Circulation,1982,66(6):1146-1149.
[4] Wang X,Wang J,Tu T,et al. Remote ischemic postconditioning protects against myocardial ischemia-reperfusion injury by inhibition of the RAGE-HMGB1 pathway[J]. Biomed Res Int,2018,2018:4565630.
[5] Goldin A,Beckman JA,Schmidt AM,et al. Advanced glycation end products:sparking the development of diabetic vascular injury[J]. Circulation,2006,114(6):597-605.
[6] Holmgren A,Bj?rnstedt M. Thioredoxin and thioredoxin reductase[J]. Methods Enzymol,1995,252:199-208.
[7] Tao L,Gao E,Bryan NS,et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion:role of S-nitrosation[J]. Proc Natl Acad Sci U S A,2004,101(31):11471-11476.
[8] Yin T,Hou R,Liu S,et al. Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury [J]. J Mol Cell Cardiol,2010,49(3):354-361.
[9] Liu Y,Q u Y,W ang R,et al. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury[J]. Am J Physiol Endocrinol Metab,2012,303(7):E841-E852.
[10] Zaruba MM,F ranz WM. Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy[J]. Expert Opin Biol Ther,2010,10(3):321-335.
[11] Hausenloy DJ,Y ellon DM. Remote ischaemic preconditioning:underlying mechanisms and clinical application[J]. Cardiovasc Res ,2008,79(3):377-386.
[12] Cao B,W ang H,Z hang C,et al. Remote Ischemic Postconditioning(RIPC)of the upper arm results in protection from cardiac ischemia-reperfusion injury following primary Percutaneous Coronary Intervention(PCI)for acute ST-Segment Elevation Myocardial Infarction(STEMI)[J]. Med Sci Monit,2018,24:1017-1026.
[13] Min F,J ia X J,Gao Q,et al. Remote ischemic post?conditioning protects against myocardial ischemia/reperfusion injury by inhibiting the Rho?kinase signaling pathway[J]. Exp Ther Med,2020,19(1):99-106.
[14] Satoh K,F ukumoto Y,S himokawa H. Rho-kinase:important new therapeutic target in cardiovascular diseases[J]. Am J Physiol Heart Circ Physiol ,2011,301(2):H287-H296.
[15] Shimokawa H,S unamura S,S atoh K. RhoA/Rho-kinase in the cardiovascular system[J]. Circ Res,2016,118(2):352-366.
[16] Bian H,Z hou Y,Yu B,et al. Rho-kinase signaling pathway promotes the expression of PARP to accelerate cardiomyocyte apoptosis in ischemia/reperfusion[J]. Mol Med Rep,2017,16(2):2002-2008.
[17] Liu X Z,Sun X,S hen K P,et al. Aldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury[J]. Neural Regen Res,2017,12(7):1166-1171.
[18] Sun A,Z ou Y,W ang P ,et al. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice[J]. J Am Heart Assoc,2014,3(5):e000779.
[19] Zhang ZX,Li H,He JS,et al. Remote ischemic postconditioning alleviates myocardial ischemia/reperfusion injury by up-regulating ALDH2[J]. Eur Rev Med Pharmacol Sci,2018,22(19):6475-6484.
[20] Gao S,Z han L,Y ang Z,et al. Remote limb ischaemic postconditioning protects against myocardial ischaemia/reperfusion injury in mice:activation of JAK/STAT3-mediated Nrf2-antioxidant signalling[J]. Cell Physiol Biochem,2017,43(3):1140-1151.
[21] McMahon M,I ton K,Y amamoto M,et al. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression[J]. J Biol Chem,2003,278(24):21592-21600.
[22] Ishii T,M ann GE. Redox status in mammalian cells and stem cells during culture in vitro:Critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance[J]. Redox Biol,2014,2:786-794.
[23] Miura T,T anno M. The mPTP and its regulatory proteins:final common targets of signalling pathways for protection against necrosis[J]. Cardiovasc Res,2012,94(2):181-189.
[24] Takagi H,M atsui Y,S adoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart[J]. Antioxid Redox Signal ,2007,9(9):1373-1382.
[25] Han Z,C ao J,S ong D,et al. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice,but not diabetic mice[J]. PLoS One,2014,9(1):e86838.
[26] Kerendi F,K in H,H alkos ME,et al. Remote postconditioning:Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors[J]. Basic Res Cardiol,2005,100(5):404-412.
[27] B?tker HE,Kharbanda R,Schmidt MR,et al. Remote ischaemic conditioning before hospital admission,as a complement to angioplasty,and effect on myocardial salvage in patients with acute myocardial infarction:a randomised trial[J]. Lancet,2010,375(9716):727-734.
[28] Sloth AD,S chmidt MR,M unk K,et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention[J]. Eur Heart J,2014,35(3):168-175.
[29] Crimi G,Pica S,Raineri C,et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction:a randomized controlled trial[J]. JACC Cardiovasc Interv,2013,6(10):1055-1063.
[30] Kin H ,Zhao ZQ,Sun HY. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion[J]. Cardiovasc Res,2004,62(1):74-85.
[31] Roubille F,F ranck-miclo A,C ovinhes A,et al. Delayed postconditioning in the mouse heart in vivo[J]. Circulation,2011,124(12):1330-1336.
[32] Wei M,X in P,L i S,et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction[J]. Circ Res ,2011,108(10):1220-1225.
[33] Yamaguchi T,Izumi Y,Nakamura Y,et al. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction[J]. Int J Cardiol,2015,178:239-246.
[34] Meng R,A smaro K,M eng L,et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis[J]. Neurology,2012,79(18):1853-1861.
[35] Arnold JR,P Vanezis A,Rodrigo GC,et al. Effects of late,repetitive remote ischaemic conditioning on myocardial strain in patients with acute myocardial infarction[J]. Basic Res Cardiol,2022,117(1):23.
[36] Gupta S,Gupta MM. No reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction[J]. Indian Heart J,2016,68(4):539-551.
[37] Morishima I,Sone T,O kumura K,et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction[J]. J Am Coll Cardiol,2000,36(4):1202-1209.
[38] Jaffe R,C harron T,P uley G,et al. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention[j]. circulation,2008,117(24):3152-3156.
相似文献/References:
[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(10):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(10):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(10):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(10):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(10):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(10):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(10):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(10):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(10):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]