参考文献/References:
[1] Liang YF,Long ZX,Zhang YJ,et al. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications[J]. Biochimie ,2021,184:72-87.
[2] Iliou A,Mikros E,Karaman I,et al. Metabolic phenotyping and cardiovascular disease:an overview of evidence from epidemiological settings[J]. Heart ,2021,107(14):1123-1129.
[3] Neinast M,Murashige D,Arany Z. Branched chain amino acids[J]. Annu Rev Physiol ,2019,81:139-164.
[4] Nie C, He T, Zhang W,et al. Branched chain amino acids:beyond nutrition metabolism[J]. Int J Mol Sci ,2018,19(4):954.
[5] Tobias DK, Mora S, Verma S,et al. Altered branched chain amino acid metabolism:toward a unifying cardiometabolic hypothesis[J]. Curr Opin Cardiol ,2018,33(5):558-564.
[6] Sivanand S, Vander Heiden MG. Emerging roles for branched-chain amino acid metabolism in cancer[J]. Cancer Cell ,2020,37(2):147-156.
[7] Adeva-Andany MM,López-Maside L,Donapetry-García C,et al. Enzymes involved in branched-chain amino acid metabolism in humans[J]. Amino Acids ,2017,49(6):1005-1028.
[8] Arany Z,Neinast M. Branched chain amino acids in metabolic disease[J]. Curr Diab Rep ,2018,18(10):76.
[9] Flores-Guerrero JL,Groothof D,Connelly MA,et al. Concentration of branched-chain amino acids is a strong risk marker for incident hypertension[J]. Hypertension ,2019,74(6):1428-1435.
[10] Poggiogalle E,Fontana M,Giusti AM,et al. Amino acids and hypertension in adults[J]. Nutrients ,2019,11(7):1459.
[11] Mahbub MH,Yamaguchi N,Hase R,et al. Plasma branched-chain and aromatic amino acids in relation to hypertension[J]. Nutrients ,2020,12(12):3791.
[12] Flores-Guerrero JL,Connelly MA,Shalaurova I,et al. A metabolomic index based on lipoprotein subfractions and branched chain amino acids is associated with incident hypertension[J]. Eur J Intern Med ,2021,94:56-63.
[13] Wang FH,Liu J,Deng QJ,et al. Association between plasma essential amino acids and atherogenic lipid profile in a Chinese population:a cross-sectional study[J]. Atherosclerosis ,2019,286:7-13.
[14] Zhenyukh O,González-Amor M,Rodrigues-Diez RR,et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation[J]. J Cell Mol Med ,2018,22(10):4948-4962.
[15] Zaric BL,Radovanovic JN,Gluvic Z,et al. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes[J]. Front Immunol ,2020,11:551758.
[16] Grajeda-Iglesias C,Rom O,Aviram M. Branched-chain amino acids and atherosclerosis:friends or foes?[J]. Curr Opin Lipidol,2018,29(2):166-169.
[17] Grajeda-Iglesias C,Aviram M. Specific amino acids affect cardiovascular diseases and atherogenesis via protection against macrophage foam cell formation:review article[J]. Rambam Maimonides Med J ,2018,9(3):e0022.
[18] Xu Y,Jiang H,Li L,et al. Branched-chain amino acid catabolism promotes thrombosis risk by enhancing tropomodulin-3 propionylation in platelets[J]. Circulation ,2020,142(1):49-64.
[19] Tobias DK,Lawler PR,Harada PH,et al. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women[J]. Circ Genom Precis Med ,2018,11(4):e002157.
[20] Du X,You H,Li Y,et al. Relationships between circulating branched chain amino acid concentrations and risk of adverse cardiovascular events in patients with STEMI treated with PCI[J]. Sci Rep ,2018,8(1):15809.
[21] Li T,Zhang Z,Kolwicz SC Jr,et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury[J]. Cell Metab ,2017,25(2):374-385.
[22] Chen M,Gao C,Yu J,et al. Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure[J]. J Am Heart Assoc ,2019,8(11):e011625.
[23] Xiong Y,Jiang L,Li T. Aberrant branched-chain amino acid catabolism in cardiovascular diseases[J]. Front Cardiovasc Med ,2022,9:965899.
[24] Portero V,Nicol T,Podliesna S,et al. Chronically elevated branched chain amino acid levels are pro-arrhythmic[J]. Cardiovasc Res ,2022,118(7):1742-1757.
[25] Yu LM,Dong X,Zhao JK,et al. Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism[J]. Free Radic Bio l Med,2022,178:202-214.
[26] Lian K,Du C,Liu Y,et al. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice[J]. Diabetes ,2015,64(1):49-59.
[27] White PJ,McGarrah RW,Grimsrud PA,et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase[J]. Cell Metab ,2018,27(6):1281-1293.e7.
[28] Solon-Biet SM,Cogger VC,Pulpitel T,et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control[J]. Nat Metab ,2019,1(5):532-545.
[29] Tobias DK,Clish C,Mora S,et al. Dietary intakes and circulating concentrations of branched-chain amino acids in relation to incident type 2 diabetes risk among high-risk women with a history of gestational diabetes mellitus[J]. Clin Chem ,2018,64(8):1203-1210.
[30] Okekunle AP,Zhang M,Wang Z,et al. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk:a meta-analysis[J]. Acta Diabetol ,2019,56(2):187-195.
[31] Rousseau M,Guénard F,Garneau V,et al. Associations between dietary protein sources,plasma BCAA and short-chain acylcarnitine levels in adults[J]. Nutrients ,2019,11(1):173.
[32] de la O V,Zazpe I,Ruiz-Canela M. Effect of branched-chain amino acid supplementation,dietary intake and circulating levels in cardiometabolic diseases:an updated review[J]. Curr Opin Clin Nutr Metab Care ,2020,23(1):35-50.
[33] Pedersen HK,Gudmundsdottir V,Nielsen HB,et al. Human gut microbes impact host serum metabolome and insulin sensitivity[J]. Nature ,2016,535(7612):376-381.
[34] Mesnage R,Grundler F,Schwiertz A,et al. Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger fasting[J]. J Nutr Sci ,2019,8:e36.
[35] Tso SC,Gui WJ,Wu CY,et al. Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase[J]. J Biol Chem ,2014,289(30):20583-20593.
[36] Li Y,Xiong Z,Yan W,et al. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-alpha pathway-dependent fatty acid oxidation[J]. Theranostics ,2020,10(12):5623-5640.
[37] Biswas D,Duffley L,Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling,metabolic remodeling,and energy homeostasis[J]. FASEB J ,2019,33(8):8711-8731.
[38] Wang F,Wan Y,Yin K,et al. Lower circulating branched-chain amino acid concentrations among vegetarians are associated with changes in gut microbial composition and function[J]. Mol Nutr Food Res ,2019,63(24):e1900612.
[39] Zhang L,Yue YS,Shi MX,et al. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice[J]. Food Chem ,2020,320:126648.
[40] Tuccinardi D,Perakakis N,Farr OM,et al. Branched-chain amino acids in relation to food preferences and insulin resistance in obese subjects consuming walnuts:a cross-over,randomized,double-blind,placebo-controlled inpatient physiology study[J]. Clin Nutr ,2021,40(5):3032-3036.
[41] Tao H,Yang X,Wang W,et al. Regulation of serum lipidomics and amino acid profiles of rats with acute myocardial ischemia by Salvia miltiorrhiza and Panax notoginseng herb pair[J]. Phytomedicine ,2020,67:153162.
[42] Wu S,Zuo J,Cheng Y,et al. Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice[J]. Food Res Int ,2021,147:110550.
[43] Yue SJ,Liu J,Wang AT,et al. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids[J]. Am J Physiol Endocrinol Metab ,2019,316(1):E73-E85.