[1]琚敏 汪蕾 宋雷 方纬.心脏交感神经显像的临床应用和研究进展[J].心血管病学进展,2023,(1):16-20.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.005]
 JU Min,WANG Lei,SONG Lei,et al.Clinical Application and Research Progress of Cardiac Sympathetic Imaging[J].Advances in Cardiovascular Diseases,2023,(1):16-20.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.005]
点击复制

心脏交感神经显像的临床应用和研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年1期
页码:
16-20
栏目:
主题综述
出版日期:
2023-01-25

文章信息/Info

Title:
Clinical Application and Research Progress of Cardiac Sympathetic Imaging
作者:
琚敏1 汪蕾1 宋雷2 方纬1
(1.北京协和医学院 国家心血管病中心 中国医学科学院阜外医院核医学科,北京100037;2.北京协和医学院 国家心血管病中心 中国医学科学院阜外医院心内科,北京100037)
Author(s):
JU Min1WANG Lei1SONG Lei2FANG Wei1
(1.Department of Nuclear Medicine,Fuwai Hospital,National Center for Cardiovascular Diseases,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100037,China; 2.Department of Cardiology,Fuwai Hospital,National Center for Cardiovascular Diseases,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100037,China)
关键词:
心脏交感神经放射性核素显像心力衰竭缺血性心脏病
Keywords:
Sympathetic nerveRadionuclide imagingHeart failureIschemic heart disease
DOI:
10.16806/j.cnki.issn.1004-3934.2023.01.005
摘要:
交感神经系统在调节心血管功能方面起着关键作用,其功能异常是多种心血管疾病发生和发展的重要机制。应用放射性核素心脏交感神经显像,可无创性评估心脏交感神经支配的功能状态和病理改变,在疾病诊断、危险分层、预后评估和疗效评价等方面都具有重要的作用。现综述心脏交感神经显像技术在心力衰竭、缺血性心脏病和心脏移植等方面的临床应用研究,以及研发新型显像药物对该技术普及推广的意义。
Abstract:
Sympathetic nervous system plays a key role in regulating cardiovascular function,and its dysfunction is an important mechanism for the occurrence and development of many cardiovascular diseases. Radionuclide cardiac sympathetic imaging can non-invasively evaluate the functional state and pathological changes of cardiac sympathetic innervation,and it plays an important role in disease diagnosis,risk stratification,prognosis evaluation and curative effect evaluation. This article reviewed the clinical application of cardiac sympathetic imaging technology in heart failure,ischemic heart disease and heart transplantation,and the significance of developing new imaging drugs for the popularization of this technology.

参考文献/References:

[1] Capitanio S,Nanni C,Marini C,et al. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT[J]. Nucl Med Biol,2015,42(11):858-863.

[2] Nakajima K,Scholte AJHA,Nakata T,et al. Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine:perspectives from Japan and Europe[J]. J Nucl Cardiol,2017,24(3):952-960.

[3] Matsumoto N,Hirayama A. Current Japanese Ministry of Health,Labor,and Welfare approval of cardiac single photon emission computed tomography[J]. Ann Nucl Cardiol,2015,1(1):108-109.

[4] Nakajima K,Nakata T,Matsuo S,et al. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure:2- and 5-year risk models[J]. Eur Heart J Cardiovasc Imaging,2016,17(10):1138-1145.

[5] Wu J,Lin SF,Gallezot JD,et al. Quantitative analysis of dynamic 123I-mIBG SPECT imaging data in healthy humans with a population-based metabolite correction method[J]. J Nucl Med,2016,57(8):1226-1232.

[6] Chen X,Kudo T,Lapa C,et al. Recent advances in radiotracers targeting norepinephrine transporter:structural development and radiolabeling improvements[J]. J Neural Transm(Vienna),2020,127(6):851-873.

[7] Law MP,Osman S,Davenport RJ,et al. Biodistribution and metabolism of [N-methyl-11C]m-hydroxyephedrine in the rat[J]. Nucl Med Biol,1997,24(5):417-424.

[8] Schwaiger M,Kalff V,Rosenspire K,et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography[J]. Circulation,1990,82(2):457-464.

[9] Wu KY,Zelt JGE,Wang T,et al. Reliable quantification of myocardial sympathetic innervation and regional denervation using [11C]meta-hydroxyephedrine PET[J]. Eur J Nucl Med Mol Imaging,2020,47(7):1722-1735.

[10] Engelhardt S,Hein L,Wiesmann F,et al. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice[J]. Proc Natl Acad Sci U S A,1999,96(12):7059-7064.

[11] Triposkiadis F,Karayannis G,Giamouzis G,et al. The sympathetic nervous system in heart failure physiology,pathophysiology,and clinical implications[J]. J Am Coll Cardiol,2009,54(19):1747-1762.

[12] Zhang DY,Anderson AS. The sympathetic nervous system and heart failure[J]. Cardiol Clin,2014,32(1):33-45,vii.

[13] Narula J,Gerson M,Thomas GS,et al. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure:the ADMIRE-HFX study[J]. J Nucl Med,2015,56(7):1011-1018.

[14] Ketchum ES,Jacobson AF,Caldwell JH,et al. Selective improvement in Seattle Heart Failure Model risk stratification using iodine-123 meta-iodobenzylguanidine imaging[J]. J Nucl Cardiol,2012,19(5):1007- 1016.

[15] Al Badarin FJ,Wimmer AP,Kennedy KF,et al. The utility of ADMIRE-HF risk score in predicting serious arrhythmic events in heart failure patients:incremental prognostic benefit of cardiac 123I-mIBG scintigraphy[J]. J Nucl Cardiol,2014,21(4):756-762;quiz 753-755,763-765.

[16] Boogers MJ,Borleffs CJ,Henneman MM,et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients[J]. J Am Coll Cardiol,2010,55(24):2769-2777.

[17] Nishisato K,Hashimoto A,Nakata T,et al. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia:quantification of cardiac tracers in patients with ICDs[J]. J Nucl Med,2010,51(8):1241-1249.

[18] Martignani C,Diemberger I,Nanni C,et al. Cardiac resynchronization therapy and cardiac sympathetic function[J]. Eur J Clin Invest,2015,45(8):792-799.

[19] Tokuda Y,Sakakibara M,Yoshinaga K,et al. Early therapeutic effects of adaptive servo-ventilation on cardiac sympathetic nervous function in patients with heart failure evaluated using a combination of 11C-HED PET and 123I-MIBG SPECT[J]. J Nucl Cardiol,2019,26(4):1079-1089.

[20] Cohen-Solal A,Rouzet F,Berdeaux A,et al. Effects of carvedilol on myocardial sympathetic innervation in patients with chronic heart failure[J]. J Nucl Med,2005,46(11): 1796-1803.

[21] Longhurst JC,Tjen-A-Looi SC,Fu LW. Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes[J]. Ann N Y Acad Sci,2001,940:74-95.

[22] Travin MI. Current clinical applications and next steps for cardiac innervation imaging[J]. Curr Cardiol Rep,2017,19(1):1.

[23] Matsunari I,Schricke U,Bengel FM,et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes[J]. Circulation,2000,101(22):2579-2585.

[24] Estorch M,Narula J,Flotats A,et al. Concordance between rest MIBG and exercise tetrofosmin defects:possible use of rest MIBG imaging as a marker of reversible ischaemia[J]. Eur J Nucl Med,2001,28(5):614-619.

[25] Aras O,Dilsizian V. Targeting ischemic memory[J]. Curr Opin Biotechnol,2007,18(1):46-51.

[26] Werner RA,Maya Y,Rischpler C,et al. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by 11C-hydroxyephedrine[J]. Eur J Nucl Med Mol Imaging,2015,43(2):312-318.

[27] Watanabe K,Takahashi T,Miyajima S,et al. Myocardial sympathetic denervation,fatty acid metabolism,and left ventricular wall motion in vasospastic angina[J]. J Nucl Med,2002,43(11):1476-1481.

[28] Fallavollita JA,Heavey BM,Luisi AJ Jr,et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy[J]. J Am Coll Cardiol,2014,63(2):141-149.

[29] Wharton J,Polak JM,Gordon L,et al. Immunohistochemical demonstration of human cardiac innervation before and after transplantation[J]. Circ Res,1990,66(4):900- 912.

[30] Kaye DM,Esler M,Kingwell B,et al. Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans[J]. Circulation,1993,88(3):1110-1118.

[31] Wilson RF,Christensen BV,Olivari MT,et al. Evidence for structural sympathetic reinnervation after orthotopic cardiac transplantation in humans[J]. Circulation,1991,83(4):1210-1220.

[32] Schwaiger M,Hutchins GD,Kalff V,et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography[J]. J Clin Invest,1991,87(5):1681-1690.

[33] Estorch M,Campreciós M,Flotats A,et al. Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging[J]. J Nucl Med,1999,40(6):911-916.

[34] di Carli MF,Tobes MC,Mangner T,et al. Effects of cardiac sympathetic innervation on coronary blood flow[J]. N Engl J Med,1997,336(17):1208-1215.

[35] Bengel FM,Ueberfuhr P,Schiepel N,et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation[J]. N Engl J Med,2001,345(10):731-738.

[36] Stirrup J,Gregg S,Baavour R,et al. Hybrid solid-state SPECT/CT left atrial innervation imaging for identification of left atrial ganglionated plexi:technique and validation in patients with atrial fibrillation[J]. J Nucl Cardiol,2020,27(6):1939-1950.

[37] Teresińska A. I-123-MIBG cardiac innervation imaging in patients with atrial fibrillation[J]. J Nucl Cardiol,2020,27(6):1951-1954.

[38] Gimelli A,Menichetti F,Soldati E,et al. Predictors of ventricular ablation’s success:viability,innervation,or mismatch?[J]. J Nucl Cardiol,2021,28(1):175-183.

[39] Merlet P,Benvenuti C,Moyse D,et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy[J]. J Nucl Med,1999,40(6):917-923

[40] Yu M,Bozek J,Lamoy M,et al. Evaluation of LMI1195,a novel 18F-labeled cardiac neuronal PET imaging agent,in cells and animal models[J]. Circ Cardiovasc Imaging,2011,4(4):435-443.

[41] Sinusas AJ,Lazewatsky J,Brunetti J,et al. Biodistribution and radiation dosimetry of LMI1195:first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation[J]. J Nucl Med,2014,55(9):1445-1451.

[42] Zelt JGE,Mielniczuk LM,Orlandi C,et al. PET imaging of sympathetic innervation with [18F]flurobenguan vs [11C]mHED in a patient with ischemic cardiomyopathy[J]. J Nucl Cardiol,2019,26(6):2151-2153.

[43] Caldwell JH,Link JM,Levy WC,et al. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure[J]. J Nucl Med,2008,49(2):234-241.

相似文献/References:

[1]金亮丽 王治.现代医学影像学在心肾综合征中的应用进展[J].心血管病学进展,2021,(7):645.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
 JIN Liangli,WANG Zhi.Application Progress of Modern Medical Imaging Technology in Cardiorenal Syndrome[J].Advances in Cardiovascular Diseases,2021,(1):645.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
[2]方纬 李剑明.核医学新技术助力心血管疾病的精准诊疗[J].心血管病学进展,2023,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.001]
 FANG Wei,LI Jianming.Innovative Technology in Nuclear Medicine Optimize Precise Diagnosis and Treatment for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.001]
[3]孙晓昕 方纬 张宇辉.99mTc-焦膦酸盐单光子显像:心脏淀粉样变性分型诊断的新应用[J].心血管病学进展,2023,(1):21.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.006]
 SUN Xiaoxin,FANG Wei,ZHANG Yuhui.99mTc-Pyrophosphate Scintigraphy:New application in Diagnosis and Classification of Cardiac Amyloidosis[J].Advances in Cardiovascular Diseases,2023,(1):21.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.006]

更新日期/Last Update: 2023-03-10