参考文献/References:
[1] Dixon SJ,Lemberg KM,Lamprecht MR,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072.
[2] Cao JY, Dixon SJ. Mechanisms of ferroptosis[J]. Cell Mol Life Sci,2016,73(11-12):2195-2209.
[3] Kim SE, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth [J]. Nat Nanotechnol,2016,11(11):977-985.
[4] Ishii T,Warabi E,Mann GE. Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis[J]. Free Radic Biol Med,2019,133:169-178.
[5] Zhang Z,Yao Z,Wang L,et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy,2018,14(12):2083-2103.
[6] Adedoyin O,Boddu R,Traylor A,et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells[J]. Am J Physiol Renal Physiol,2018,314(5):F702-F714.
[7] Baba Y,Higa JK,Shimada BK,et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes[J]. Am J Physiol Heart Circ Physiol,2018,314(3):H659-H668.
[8] Bai YT,Chang R,Wang H,et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis[J]. Biochem Biophys Res Commun,2018,499(1):44-51.
[9] Fang X,Wang H,Han D,et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A,2019,116(7):2672-2680.
[10] Gao M,Monian P,Quadri N,et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell,2015,59(2):298-308.
[11] Li W,Feng G,Gauthier JM,et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest,2019,129(6):2293-2304.
[12] Liu B,Zhao C,Li H,et al. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis[J]. Biochem Biophys Res Commun,2018,497(1):233-240.
[13] Hou W,Xie Y,Song X,et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy,2016,12(8):1425-1428.
[14] Thomas C,Mackey MM,Diaz AA,et al. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress:implications for diseases associated with iron accumulation[J]. Redox Rep,2009,14(3):102-108.
[15] Kwon MY,Park E,Lee SJ,et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J]. Oncotarget,2015,6(27):24393-24403.
[16] Levi S,Rovida E. The role of iron in mitochondrial function[J]. Biochim Biophys Acta,2009,1790(7):629-636.
[17] Stehling O,Lill R. The role of mitochondria in cellular iron-sulfur protein biogenesis:mechanisms,connected processes,and diseases[J]. Cold Spring Harb Perspect Biol,2013,5(8):a011312.
[18] Barth E,Stammler G,Speiser B,et al. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man[J]. J Mol Cell Cardiol,1992,24(7):669-681.
[19] Hoes MF,Grote Beverborg N,Kijlstra JD,et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function[J]. Eur J Heart Fail,2018,20(5):910-919.
[20] Van Der Wal HH, Grote Beverborg N, Dickstein K, et al. Iron deficiency in worsening heart failure is associated with reduced estimated protein intake,fluid retention,inflammation,and antiplatelet use[J]. Eur Heart J,2019,40(44):3616-3625.
[21] De Montalembert M, Ribeil JA, Brousse V, et al. Cardiac iron overload in chronically transfused patients with thalassemia,sickle cell anemia,or myelodysplastic syndrome[J]. PLoS One,2017,12(3):e0172147.
[22] Fujikura K,Golive AD,Ando T,et al. Increased iron deposition is directly associated with myocardial dysfunction in patients with sickle cell disease[J]. JACC Cardiovasc Imaging,2018,11(2 Pt 1):279-280.
[23] Oudit GY,Sun H,Trivieri MG,et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy [J]. Nat Med,2003,9(9):1187-1194.
[24] Melenovsky V,Petrak J,Mracek T,et al. Myocardial iron content and mitochondrial function in human heart failure:a direct tissue analysis[J]. Eur J Heart Fail,2017,19(4):522-530.
[25] Grammer TB,Scharnagl H,Dressel A,et al. Iron metabolism,hepcidin,and mortality (the Ludwigshafen Risk and Cardiovascular Health Study)[J]. Clin Chem,2019,65(7):849-861.
[26] Kowdley KV,Brown KE,Ahn J,et al. ACG Clinical Guideline:Hereditary Hemochromatosis[J]. Am J Gastroenterol,2019,114(8):1202-1218.
[27] Vinchi F,Porto G,Simmelbauer A,et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction[J]. Eur Heart J,2020,41(28):2681-2695.
[28] Gao X,Qian M,Campian JL,et al. Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload[J]. Free Radic Biol Med,2010,49(3):401-407.
[29] Murphy MP. How mitochondria produce reactive oxygen species[J]. Biochem J,2009,417(1):1-13.
[30] Sugamura K, Keaney JF Jr. Reactive oxygen species in cardiovascular disease[J]. Free Radic Biol Med,2011,51(5):978-992.
[31] Jiang X,Stockwell BR,Conrad M. Ferroptosis:mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol,2021,22(4):266-282.
[32] Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis:what’s so special about it?[J]. Mol Cell Oncol,2015,2(3):e995047.
[33] Shi ZZ, Osei-Frimpong J, Kala G, et al. Glutathione synthesis is essential for mouse development but not for cell growth in culture[J]. Proc Natl Acad Sci U S A,2000,97(10):5101-5106.
[34] Yant LJ,Ran Q,Rao L,et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults[J]. Free Radic Biol Med,2003,34(4):496-502.
[35] Banjac A,Perisic T,Sato H,et al. The cystine/cysteine cycle:a redox cycle regulating susceptibility versus resistance to cell death[J]. Oncogene,2008,27(11):1618-1628.
[36] Mandal PK,Seiler A,Perisic T,et al. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency[J]. J Biol Chem,2010,285(29):22244-22253.
[37] Seiler A,Schneider M,Forster H,et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death[J]. Cell Metab,2008,8(3):237-248.
[38] Bersuker K,Hendricks JM,Li Z,et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature,2019,575(7784):688-692.
[39] Doll S,Freitas FP,Shah R,et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature,2019,575(7784):693-698.
[40] Mao C,Liu X,Zhang Y,et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature,2021,593(7860):586-590.
[41] Shintoku R,Takigawa Y,Yamada K,et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J]. Cancer Sci,2017,108(11):2187-2194.
[42] Pang X,Panee J,Liu X,et al. Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration[J]. J Neuroimmune Pharmacol,2013,8(3):691-704.
[43] Panee J,Stoytcheva ZR,Liu W,et al. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification[J]. J Biol Chem,2007,282(33):23759-23765.
[44] Yang WS,Sriramaratnam R,Welsch ME,et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell,2014,156(1-2):317-331.
[45] Kagan VE,Mao G,Qu F,et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol,2017,13(1):81-90.
[46] Weber D,Milkovic L,Bennett SJ,et al. Measurement of HNE-protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies[J]. Redox Biol,2013,1:226-233.
[47] Yoritaka A,Hattori N,Uchida K,et al. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease[J]. Proc Natl Acad Sci U S A,1996,93(7):2696-2701.
[48] Jeitner TM. Optimized ferrozine-based assay for dissolved iron[J]. Anal Biochem,2014,454:36-37.
[49] Riemer J,Hoepken HH,Czerwinska H,et al. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells[J]. Anal Biochem,2004,331(2):370-375.
[50] Jelinek A,Heyder L,Daude M,et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis[J]. Free Radic Biol Med,2018,117:45-57.
[51] Mukhopadhyay P,Rajesh M,Hasko G,et al. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy[J]. Nat Protoc,2007,2(9):2295-2301.
[52] Martinez AM,Kim A,Yang WS. Detection of ferroptosis by BODIPY 581/591 C11[J]. Methods Mol Biol,2020,2108:125-130.
[53] Drummen GP, van Liebergen LC, Op den Kamp JA,et al. C11-BODIPY(581/591),an oxidation-sensitive fluorescent lipid peroxidation probe:(micro)spectroscopic characterization and validation of methodology[J]. Free Radic Biol Med,2002,33(4):473-490.
[54] Pieroni L,Khalil L,Charlotte F,et al. Comparison of bathophenanthroline sulfonate and ferene as chromogens in colorimetric measurement of low hepatic iron concentration[J]. Clin Chem,2001,47(11):2059-2061.
[55] Bulluck H, Rosmini S, Abdel-Gadir A, et al. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling[J]. Circ Cardiovasc Imaging,2016,9(10):e004940.
[56] Zilka O,Shah R,Li B,et al. On the Mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J]. ACS Cent Sci,2017,3(3):232-243.
相似文献/References:
[1]黄淮滨 刘甲兴.肥厚型心肌病治疗新靶点——钙脱敏治疗[J].心血管病学进展,2019,(7):1047.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.021]
HUANG HuaibinLIU Jiaxing.A Novel Target for Therapy in Hypertrophic Cardiomyopathy: Ca2+ desensitizer[J].Advances in Cardiovascular Diseases,2019,(2):1047.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.021]
[2]杜冲 韦文 李亚飞 王连生.心肌梗死后心肌细胞内源再生的研究进展[J].心血管病学进展,2020,(4):395.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.017]
DU Chong,WEI Tianwen,LI Yafei,et al.Endogenous Regeneration of Myocardial Cells after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(2):395.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.017]
[3]谭海鹏 高金峰 李琦玉 王樵梓 张宁 陈婧 黄浙勇.MicroRNA促进心肌细胞再生机制的研究进展[J].心血管病学进展,2020,(7):698.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.007]
TAN Haipeng,GAO Jinfeng,LI Qiyu,et al.Mechanism of MicroRNA Promoting Cardiomyocyte Regeneration[J].Advances in Cardiovascular Diseases,2020,(2):698.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.007]
[4]张伟 权大君 向杰 黄从新.人源性诱导多潜能干细胞向心肌细胞分化的实验研究[J].心血管病学进展,2020,(7):753.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.020]
ZHANG Wei,QUAN Dajun,XIANG Jie,et al.Experimental Research on Differentiation of Human Induced Pluripotent Stem Cells into Cardiomyocytes[J].Advances in Cardiovascular Diseases,2020,(2):753.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.020]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(2):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]魏士雄 孙赫.过氧化物酶体增殖物激活受体激动剂在心肌梗死中的作用机制研究进展[J].心血管病学进展,2021,(12):1110.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.013]
WEI Shixiong,SUN He.Action Mechanism of Peroxisome Proliferator-activated Receptor Agonist in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2021,(2):1110.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.013]
[7]袁明明 赖松青 张泽宇 吴起才.铁死亡在脓毒症心脏功能损伤中的研究进展[J].心血管病学进展,2022,(1):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
YUAN mingmingLAI SongqingZHANG ZeyuWU Qicai.Ferroptosis in Cardiac Function Impairment in Sepsis[J].Advances in Cardiovascular Diseases,2022,(2):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
[8]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(2):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[9]彭可玲 贾晓艳 王华 刘永铭.铁死亡与心力衰竭的研究进展[J].心血管病学进展,2022,(5):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
PENG Keling,JIA Xiaoyan,WANG Hua,et al.Ferroptosis and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(2):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
[10]邵亚兰 马继鹏 卢林鹤 熊祥 马燕燕 刘金成 杨剑.铁死亡与铁自噬在中的研究进展[J].心血管病学进展,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
SHAO Yalan,MA Jipeng,LU Linhe,et al.Ferroptosis and Ferritinophagy in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(2):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]