[1]李玉洁 张瑜 吴诚洁 陆琳 王燕丽 李杨欣.核糖体泛素化在心血管疾病中的研究进展[J].心血管病学进展,2022,(10):910.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.011]
 Li Yujie,Zhang Yu,Wu Chengjie,et al.Ribosomal Ubiquitination in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(10):910.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.011]
点击复制

核糖体泛素化在心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
910
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
Ribosomal Ubiquitination in Cardiovascular Disease
作者:
李玉洁 张瑜 吴诚洁 陆琳 王燕丽 李杨欣
(苏州大学医学院心血管病研究所 苏州大学附属第一医院 心脏大血管外科,江苏 苏州 215123 )
Author(s):
Li YujieZhang YuWu ChengjieLu LinWang YanliLi Yangxin
(Institute for Cardiovascular Science,Medical College of Soochow University;Department of Cardiovascular Surgery,The First Affiliated Hospital of Soochow University ,Jiangsu,Suzhou 215123)
关键词:
核糖体泛素化心血管疾病
Keywords:
Ribosome Ubiquitination Cardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.011
摘要:
心血管疾病是全球发病率及致死率最高的疾病之一。核糖体是细胞中合成蛋白质的细胞器。研究证实泛素化系统在心血管疾病中具有重要的生理和病理生理学意义。越来越多的证据表明,核糖体的泛素化可能参与心血管疾病的发生发展,有望成为心血管疾病诊断的标志物以及治疗靶标。本文就核糖体泛素化在心肌梗死、缺血后再灌注损伤、心肌肥厚和心肌重构等心血管疾病中的研究进展进行综述。
Abstract:
Cardiovascular disease is the leading cause of death globally.??Ribosome is cellular organelle that synthesize proteins. Studies have confirmed that the ubiquitination system plays an important physiological and pathological role in the development of cardiovascular diseases. Emerging evidence shows that ribosomal ubiquitination may be involved in regulating the occurrence and development of myocardial infarction,?post-ischemic reperfusion injury,?myocardial hypertrophy and cardiac remodeling. It is expected to become a target for the diagnosis and treatment of cardiovascular diseases. This paper reviews the research progress of ribosomal ubiquitination in cardiovascular diseases

参考文献/References:

[1] Liu S,Li Y,Zeng X,et al. Burden of cardiovascular diseases in China,1990-2016:findings from the 2016 global burden of disease study[J]. JAMA Cardiol,2019,4(4):342-352.

[2] Leonard EA,Marshall RJ. Cardiovascular disease in women[J]. Prim Care,2018,45(1):131-141.

[3] de Las Heras-Rubio A,Perucho L,Paciucci R,et al. Ribosomal proteins as novel players in tumorigenesis[J]. Cancer Metastasis Rev,2014,33(1):115-141.

[4] Klinge S,Woolford JL Jr. Ribosome assembly coming into focus[J]. Nat Rev Mol Cell Biol,2019,20(2):116-131.

[5] Ba?ler J,Hurt E. Eukaryotic ribosome assembly[J]. Annu Rev Biochem,2019,88:281-306.

[6] Pecoraro A,Pagano M,Russo G,et al. Ribosome biogenesis and cancer:overview on ribosomal proteins[J]. Int J Mol Sci,2021,22(11):5496.

[7] d’aquino AE,Kim DS,Jewett MC. Engineered ribosomes for basic science and synthetic biology[J]. Annu Rev Chem Biomol Eng,2018,9:311-340.

[8] 陆禹严,贺茂林,罗书钜. 核糖体蛋白在骨肉瘤中的研究进展[J]. 癌症进展,2020,18(5):448-451+492.

[9] Wang W,Nag S,Zhang X,et al. Ribosomal proteins and human diseases:pathogenesis,molecular mechanisms,and therapeutic implications[J]. Med Res Rev,2015,35(2):225-285.

[10] Zhou X,Liao WJ,Liao JM,et al. Ribosomal proteins:functions beyond the ribosome[J]. J Mol Cell Biol,2015,7 (2):92-104.

[11] Yang HJ,Youn H,Seong KM,et al. Phosphorylation of ribosomal protein S3 and antiapoptotic TRAF2 protein mediates radioresistance in non-small cell lung cancer cells[J]. J Biol Chem,2013,288(5):2965-2975.

[12] Jang CY,Kim HD,Kim J. Ribosomal protein S3 interacts with TRADD to induce apoptosis through caspase dependent JNK activation[J]. Biochem Biophys Res Commun,2012,421(3):474-478.

[13] Daftuar L,Zhu Y,Jacq X,et al. Ribosomal proteins RPL37,RPS15 and RPS20 regulate the Mdm2-p53-MdmX network[J]. PLoS One,2013,8(7):e68667.

[14] Chen C,Yuan J,Ji G,et al. Amphioxus ribosomal proteins RPS15,RPS18,RPS19 and RPS30-precursor act as immune effectors via killing or agglutinating bacteria[J]. Fish Shellfish Immunol,2021,118:147-54.

[15] Russo A,Esposito D,Catillo M,et al. Human rpL3 induces G(1)/S arrest or apoptosis by modulating p21 (waf1/cip1) levels in a p53-independent manner[J]. Cell Cycle,2013,12(1):76-87.

[16] Provost E,Wehner KA,Zhong X,et al. Ribosomal biogenesis genes play an essential and p53-independent role in zebrafish pancreas development[J]. Development,2012,139(17):3232-3241.

[17] Yan F,Gao M,Gong Y,et al. Proteomic analysis of underlying apoptosis mechanisms of human retinal pigment epithelial ARPE-19 cells in response to mechanical stretch[J]. J Cell Physiol,2020,235(10):7604-7019.

[18] Dai MS,Arnold H,Sun XX,et al. Inhibition of c-Myc activity by ribosomal protein L11[J]. EMBO J,2007,26(14):3332-3345.

[19] Hsu YA,Lin HJ,Sheu JJ,et al. A novel interaction between interferon-inducible protein p56 and ribosomal protein L15 in gastric cancer cells[J]. DNA Cell Biol,2011,30(9):671-679.

[20] Varshavsky A. The Ubiquitin system,autophagy,and regulated protein degradation[J]. Annu Rev Biochem,2017,86:123-128.

[21] Goldknopf IL,French MF,Musso R,et al. Presence of protein A24 in rat liver nucleosomes[J]. Proc Natl Acad Sci U S A,1977,74(12):5492-5495.

[22] Swatek KN,Komander D. Ubiquitin modifications[J]. Cell Res,2016,26(4):399-422.

[23] Hutchins AP,Liu S,Diez D,et al. The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes[J]. Mol Biol Evol,2013,30(5):1172-1187.

[24] Chen RH,Chen YH,Huang TY. Ubiquitin-mediated regulation of autophagy[J]. J Biomed Sci,2019,26(1):80.

[25] Yau R,Rape M. The increasing complexity of the ubiquitin code[J]. Nat Cell Biol,2016,18(6):579-586.

[26] Wang F,Lerman A,Herrmann J. Dysfunction of the ubiquitin-proteasome system in atherosclerotic cardiovascular disease[J]. Am J Cardiovasc Dis,2015,5(1): 83-100.

[27] Jia W,Yao Z,Zhao J,et al. New perspectives of physiological and pathological functions of nucleolin (NCL)[J]. Life Sci,2017,186:1-10.

[28] Wang S,Chen X,Wang M,et al. Long non-coding RNA CYP4B1-PS1-001 inhibits proliferation and fibrosis in diabetic nephropathy by interacting with nucleolin[J]. Cell Physiol Biochem,2018,49(6):2174-2187.

[29] Ko CY,Lin CH,Chuang JY,et al. MDM2 Degrades deacetylated nucleolin through ubiquitination to promote glioma stem-like cell enrichment for chemotherapeutic resistance[J]. Mol Neurobiol,2018,55(4):3211-3223.

[30] Zhang N,Zhang Y,Qian H,et al. Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WWP2 regulates isoproterenol-induced cardiac remodeling[J]. Cell Death Differ,2020,27(9):2605-2619.

[31] Feng GS,Zhu CG,Li ZM,et al. Synthesis of the novel PARP-1 inhibitor AG-690/11026014 and its protective effects on angiotensinⅡ-induced mouse cardiac remodeling[J]. Acta Pharmacol Sin,2017,38(5):638-650.

[32] Henning RJ,Bourgeois M,Harbison RD. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors:mechanisms of action and role in cardiovascular disorders[J]. Cardiovasc Toxicol,2018,18(6):493-506.

[33] Wen JJ,Yin YW,Garg NJ. PARP1 depletion improves mitochondrial and heart function in Chagas disease:effects on POLG dependent mtDNA maintenance[J]. PLoS Pathog,2018,14(5):e1007065.

[34] Chen Z,Jiang H,Xu W,et al. A Tunable Brake for HECT Ubiquitin Ligases[J]. Mol Cell,2017,66(3):345-57.e6.

[35] Depre C,Wang Q,Yan L,et al. Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy[J]. Circulation,2006,114(17):1821-1828.

[36] Brandman O,Stewart-Ornstein J,Wong D,et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress[J]. Cell,2012,151(5):1042-1054.

[37] Izawa T,Park SH,Zhao L,et al. Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis[J]. Cell,2017,171(4):890-903 e18.

[38] Meyer C,Garzia A,Morozov P,et al. The G3BP1-family-USP10 deubiquitinase complex rescues ubiquitinated 40S subunits of ribosomes stalled in translation from lysosomal degradation[J]. Mol Cell,2020,77(6):1193-1205.e5.

[39] Yu X,Kem DC. Proteasome inhibition during myocardial infarction[J]. Cardiovasc Res,2010,85(2):312-320.

[40] Watanabe S,Fujiyama H,Takafuji T,et al. GRWD1 regulates ribosomal protein L23 levels via the ubiquitin-proteasome system[J]. J Cell Sci,2018,131(15):jcs213009.

[41] Na X,Duan H O,Messing E M,et al. Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel-Lindau protein[J]. EMBO J,2003,22,16:42:49-59.

[42] Minervini G,Pennuto M,Tosatto SCE. The pVHL neglected functions,a tale of hypoxia-dependent and -independent regulations in cancer[J]. Open Biol,2020,10(7):200109.

相似文献/References:

[1]刘镏 王昊 王连生.泛素化在心肌梗死后的心肌保护与促再生作用[J].心血管病学进展,2021,(8):702.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.008]
 LIU LiuWANG HaoWANG Liansheng.Positive Role of Ubiquitination in Cardiomyocyte Protection and Endogenous Regeneration after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2021,(10):702.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.008]

更新日期/Last Update: 2022-12-26