参考文献/References:
[1] Tomaniak M,KatagirI Y,Modolo R,et al. Vulnerable plaques and patients:state-of-the-art[J]. Eur Heart J,2020,41(31):2997-3004.
[2] Johnson TW,R?ber L,di Mario C,et al. Clinical use of intracoronary imaging. Part 2:acute coronary syndromes,ambiguous coronary angiography findings,and guiding interventional decision-making:an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J,2019,40(31):2566-2584.
[3] Stone GW,Maehara A,Lansky AJ,et al. A prospective natural-history study of coronary atherosclerosis[J]. N Engl J Med,2011,364(3):226-235.
[4] Calvert PA,Obaid DR,O’Sullivan M,et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease:the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study[J]. JACC Cardiovasc Imaging,2011,4(8):894-901.
[5] Schuurman AS,Vroegindewey MM,Kardys I,et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease[J]. J Am Coll Cardiol,2018,72(17):2003-2011.
[6] Waksman R,Di Mario C,Torguson R,et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging:a prospective,cohort study[J]. Lancet,2019,394(10209):1629-1637.
[7] Erlinge D,Maehara A,Ben-Yehuda O,et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT Ⅱ):a prospective natural history study[J]. Lancet,2021,397(10278):985-995.
[8] 中华医学会心血管病学分会介入心脏病学组,心血管病影像学组. 光学相干断层成像技术在冠心病介入诊疗领域的应用中国专家建议[J]. 中华心血管病杂志,2017,45(1):5-12.
[9] Prati F,Romagnoli E,Gatto L,et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome:the CLIMA study[J]. Eur Heart J,2020,41(3):383-391.
[10] Gnanadesigan M,Kameyama T,Karanasos A,et al. Automated characterisation of lipid core plaques in vivo by quantitative optical coherence tomography tissue type imaging[J]. EuroIntervention,2016,12(12):1490-1497.
[11] Kumar A,Thompson EW,Lefieux A,et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction[J]. J Am Coll Cardiol,2018,72(16):1926-1935.
[12] Lee S,Lee MW,Cho HS,et al. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels[J]. Circ Cardiovasc Interv,2014,7(4):560-569.
[13] Verjans JW,Osborn EA,Ughi GJ,et al. Targeted near-infrared fluorescence imaging of atherosclerosis:clinical and intracoronary evaluation of indocyanine green[J]. JACC Cardiovasc Imaging,2016,9(9):1087-1095.
[14] Ikeda H,Ishii A,Sano K,et al. Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green[J]. Atherosclerosis,2018,275:1-10.
[15] Ughi GJ,Wang H,Gerbaud E,et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging[J]. JACC Cardiovasc Imaging,2016,9(11):1304-1314.
[16] Htun NM,Chen YC,Lim B,et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques[J]. Nat Commun,2017,8(1):75.
[17] Bec J,Vela D,Phipps JE,et al. Label-free visualization and quantification of biochemical markers of atherosclerotic plaque progression using intravascular fluorescence lifetime[J]. JACC Cardiovasc Imaging,2021,14(9):1832-1842.
[18] Kim S,Nam HS,Lee MW,et al. Comprehensive assessment of high-risk plaques by dual-modal imaging catheter in coronary artery[J]. JACC Basic Transl Sci,2021,6(12):948-960.
[19] Bourantas CV,Jaffer FA,Gijsen FJ,et al. Hybrid intravascular imaging:recent advances,technical considerations,and current applications in the study of plaque pathophysiology[J]. Eur Heart J,2017,38(6):400-412.
[20] Xie Z,Shu C,Yang D,et al. In vivo intravascular photoacoustic imaging at a high speed of 100 frames per second[J]. Biomed Opt Express,2020,11(11):6721-6731.
[21] Lin L,Xie Z,Xu M,et al. IVUS\IVPA hybrid intravascular molecular imaging of angiogenesis in atherosclerotic plaques via RGDfk peptide-targeted nanoprobes[J]. Photoacoustics,2021,22:100262.
[22] Tian J,Dauerman H,Toma C,et al. Prevalence and characteristics of TCFA and degree of coronary artery stenosis:an OCT,IVUS,and angiographic study[J]. J Am Coll Cardiol,2014,64(7):672-680.
[23] Ahmadi A,Argulian E,Leipsic J,et al. From subclinical atherosclerosis to plaque progression and acute coronary events:JACC state-of-the-art review[J]. J Am Coll Cardiol,2019,74(12):1608-1617.
[24] Costopoulos C,Timmins LH,Huang Y,et al. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression,regression,and changes in composition[J]. Eur Heart J,2019,40(18):1411-1422.
[25] Araki M,Soeda T,Kim HO,et al. Spatial distribution of vulnerable plaques:comprehensive in vivo coronary plaque mapping[J]. JACC Cardiovasc Imaging,2020,13(9):1989-1999.
[26] Yamamoto E,Thondapu V,Poon E,et al. Endothelial shear stress and plaque erosion:a computational fluid dynamics and optical coherence tomography study[J]. JACC Cardiovasc Imaging,2019,12(2):374-375.
[27] Bourantas CV,Zanchin T,Torii R,et al. Shear stress estimated by quantitative coronary angiography predicts plaques prone to progress and cause events[J]. JACC Cardiovasc Imaging,2020,13(10):2206-2219.
[28] Thondapu V,Mamon C,Poon EKW,et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion[J]. Cardiovasc Res,2021,117(8):1974-1985.
[29] Narula J,Nakano M,Virmani R,et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques[J]. J Am Coll Cardiol,2013,61(10):1041-1051.
[30] Tian J,Ren X,Vergallo R,et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma:a combined optical coherence tomography and intravascular ultrasound study[J]. J Am Coll Cardiol,2014,63(21):2209-2216.
[31] Fujii K,Kobayashi Y,Mintz GS,et al. Intravascular ultrasound assessment of ulcerated ruptured plaques:a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes[J]. Circulation,2003,108(20):2473-2478.
[32] Kubo T,Maehara A,Mintz GS,et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization[J]. J Am Coll Cardiol,2010,55(15):1590-1597.
[33] R?ber L,Koskinas KC,Yamaji K,et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4):a serial optical coherence tomography study[J]. JACC Cardiovasc Imaging,2019,12(8Pt1):1518-1528.
[34] Vergallo R,Crea F. Atherosclerotic plaque healing[J]. N Engl J Med,2020,383(9):846-857.
[35] Wang C,Hu S,Wu J,et al. Characteristics and significance of healed plaques in patients with acute coronary syndrome and stable angina:an in vivo OCT and IVUS study[J]. EuroIntervention,2019,15(9):e771-e778.
[36] Lee SE,Sung JM,Andreini D,et al. Differences in progression to obstructive lesions per high-risk plaque features and plaque volumes with CCTA[J]. JACC Cardiovasc Imaging,2020,13(6):1409-1417.
[37] Mortensen MB,Dzaye O,Steffensen FH,et al. Impact of plaque burden versus stenosis on ischemic events in patients with coronary atherosclerosis[J]. J Am Coll Cardiol,2020,76(24):2803-2813.
[38] Maron DJ,Hochman JS,Reynolds HR,et al. Initial invasive or conservative strategy for stable coronary disease[J]. N Engl J Med,2020,382(15):1395-1407.
[39] Partida RA,Libby P,Crea F,et al. Plaque erosion:a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes[J]. Eur Heart J,2018,39(22):2070-2076.
[40] Kolte D,Libby P,Jang IK. New insights into plaque erosion as a mechanism of acute coronary syndromes[J]. JAMA,2021,325(11):1043-1044.
[41] Chandran S,Watkins J,Abdul-Aziz A,et al. Inflammatory differences in plaque erosion and rupture in patients with ST-segment elevation myocardial infarction[J]. J Am Heart Assoc,2017,6(5):e005868.
[42] Cao M,Zhao L,Ren X,et al. Pancoronary plaque characteristics in STEMI caused by culprit plaque erosion versus rupture:3-vessel OCT study[J]. JACC Cardiovasc Imaging,2021,14(6):1235-1245.
[43] Raber L,Taniwaki M,Zaugg S,et al. Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4):a serial intravascular ultrasonography study[J]. Eur Heart J,2015,36(8):490-500.
[44] Ota H,Omori H,Kawasaki M,et al. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques:a near-infrared spectroscopy study[J]. Eur Heart J Cardiovasc Imaging,2022,23(2):217-228.
[45] Stone GW,Maehara A,Ali ZA,et al. Percutaneous coronary intervention for vulnerable coronary atherosclerotic plaque[J]. J Am Coll Cardiol,2020,76(20):2289-2301.
[46] Kim U,Leipsic JA,Sellers SL,et al. Natural history of diabetic coronary atherosclerosis by quantitative measurement of serial coronary computed tomographic angiography:results of the PARADIGM study[J]. JACC Cardiovasc Imaging,2018,11(10):1461-1471.
[47] KedhI E,Berta B,Roleder T,et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve:the COMBINE OCT-FFR trial[J]. Eur Heart J,2021,42(45):4671-4679.