[1]林筝鸣 钱航 李东锋 许浩 陈继舜 闵新文 陈俊 杨汉东.胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探[J].心血管病学进展,2022,(9):852-859.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
 LIN Zhengming,QIAN Hang,LI Dongfeng,et al.Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect[J].Advances in Cardiovascular Diseases,2022,(9):852-859.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
点击复制

胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年9期
页码:
852-859
栏目:
出版日期:
2022-09-25

文章信息/Info

Title:
Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect
作者:
林筝鸣12 钱航2 李东锋2 许浩2 陈继舜2 闵新文2 陈俊2 杨汉东2
(1.锦州医科大学国药东风总医院研究生培养基地,湖北 十堰 442008;2.湖北医药学院附属国药东风总医院,湖北 十堰 442008)
Author(s):
LIN Zhengming12QIAN Hang2LI Dongfeng2XU Hao2CHEN Jishun2MIN Xinwen2CHEN Jun2YANG Handong2
(1.Dongfeng Hospital Graduate Training Base,Jinzhou Medical University,Shiyan 442008,Hubei,China; 2. Sinopharm Dongfeng General Hospital,Hubei University of Medicine,Shiyan 442008,Hubei,China)
关键词:
CRISPR/Cas9GLP-1R甲基乙二醛H9c2心肌细胞线粒体凋亡
Keywords:
CRISPR/Cas9GLP-1RMethylglyoxalH9c2Mitochondrial Apoptosis
DOI:
10.16806/j.cnki.issn.1004-3934.2022.09.019
摘要:
目的 通过CRISPR/Cas9技术构建大鼠H9c2心肌细胞胰高血糖素样肽-1受体(GLP-1R)基因敲除的稳转株,探讨甲基乙二醛对其凋亡的影响。方法 利用CRISPR/Cas9技术敲除H9c2心肌细胞的GLP-1R基因建立GLP-1R-/- H9c2细胞系,单克隆后通过测序和免疫印迹进行鉴定。H9c2细胞为野生型(WT)组,GLP-1R-/- H9c2细胞为GLP-1R-/-组。采用免疫荧光对两组细胞进行染色,电子显微镜观察细胞形态;采用MGO对两组细胞进行干预,利用CCK-8检测细胞活力,JC-1检测线粒体膜电位,实时荧光定量PCR检测GLO1、Bax、Bcl-2和caspase-3 mRNA的表达。结果 基因测序及免疫印迹结果证实,GLP-1R-/- H9c2细胞系构建成功;免疫荧光染色显示GLP-1R-/-组细胞形态较WT组显著缩小(P<0.01);CCK-8结果显示,GLP-1R-/-组细胞较WT组显著降低(P<0.01);JC-1结果显示,GLP-1R-/-组细胞的线粒体膜电位损伤显著高于WT组(P<0.01);实时荧光定量PCR结果显示,GLP-1R-/-组细胞的Bax mRNA表达显著上调(P<0.01),Bcl-2 mRNA表达显著下调(P<0.01)。而caspase-3 mRNA和GLO1 mRNA的表达在两组细胞间无显著差异(P>0.05)。结论 在GLP-1R-/-基因敲除的H9c2细胞系中,GLP-1R蛋白缺失会影响H9c2细胞的细胞形态,降低细胞活力,损伤线粒体膜电位,增强MGO诱导的凋亡,从而证明GLP-1R蛋白在H9c2细胞中的保护作用。
Abstract:
Objective To investigate the effect of methylglyoxal(MGO) on the apoptosis of stable strains of glucagon-like peptide-1 receptor(GLP-1R) gene knockout H9c2 cells which was constructed by CRISPR/Cas9 technology. Methods GLP-1R-/- H9c2 cell line was established by knocking out the GLP-1R gene of H9c2 cells by CRISPR/Cas9 technology,and identification was carried out by sequencing and western blot after monoclonalization. H9c2 cells are wild-type(WT) group and GLP-1R-/- H9c2 cells are GLP-1R-/- group. Two groups of cells were stained with immunofluorescence,and cell morphology was observed by electron microscopy. MGO was used to intervene in both groups of cells,cell viability was detected by CCK-8,mitochondrial membrane potential(MMP) was detected by JC-1,and real-time PCR was used to detect the expression of GLO1, Bax, Bcl-2, caspase-3 mRNA. Results Gene sequencing and Western blot results confirmed that the GLP-1R-/- H9c2 cell line was successfully constructed. Immunofluorescence staining showed that the cell morphology of GLP-1R-/- group was significantly smaller than that of WT group(P<0.01). The CCK-8 results showed that the cell viability of GLP-1R-/- group was significantly reduced compared with that of WT group(P<0.01). The JC-1 results showed that the MMP damage of GLP-1R-/- group cells was significantly higher than that of WT group(P<0.01). The real-time PCR results showed that the Bax mRNA expression of GLP-1R-/- group cells was significantly upregulated(P<0.01),and Bcl-2 mRNA expression was significantly downregulated(P<0.01),while there was no significant difference in caspase-3 mRNA and GLO1 mRNA expression between the two groups(P>0.05). Conclusion In the H9c2 cell line with GLP-1R-/- gene knockout,the deletion of GLP-1R protein affects the cell morphology of H9c2 cells,reduces cell viability,damages the MMP,enhances MGO-induced apoptosis,thereby demonstrating the protective role of GLP-1R protein in H9c2 cells.

参考文献/References:

[1] Tan Y,Zhang Z,Zheng C,et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies:preclinical and clinical evidence[J]. Nat Rev Cardiol,2020,17(9):585-607.?div>[2] Wang H,Meng QH,Gordon JR,et al. Proinflammatory and proapoptotic effects of methylglyoxal on neutrophils from patients with type 2 diabetes mellitus[J]. Clin Biochem,2007,40(16-17):1232-1239.?/div>

[3] Kuethe F,Sigusch HH,Bornstein SR,et al. Apoptosis in patients with dilated cardiomyopathy and diabetes:a feature of diabetic cardiomyopathy?[J]. Horm Metab Res,2007,39(9):672-676.?/div>
[4] Nam DH,Han JH,Lee TJ,et al. CHOP deficiency prevents methylglyoxal-induced myocyte apoptosis and cardiac dysfunction[J]. J Mol Cell Cardiol,2015,85:168-177.
[5] Dhar A,Dhar I,Bhat A,et al. Alagebrium attenuates methylglyoxal induced oxidative stress and AGE formation in H9c2 cardiac myocytes[J]. Life Sci,2016,146:8-14.?/div>
[6] Yang D,Wang Y,Jiang M,et al. Downregulation of profilin-1 expression attenuates cardiomyocytes hypertrophy and apoptosis induced by advanced glycation end products in H9c2 cells[J]. Biomed Res Int,2017,2017:9716087.?/div>
[7] Bock FJ,Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol,2020,21(2):85-100.?/div>
[8] Seo K,Ki SH, Shin SM. Methylglyoxal induces mitochondrial dysfunction and cell death in liver[J]. Toxicol Res,2014,30(3):193-198.?/div>
[9] Liu C,Huang Y,Zhang Y,et al. Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1alpha-JNK and mitochondrial apoptotic pathway[J]. Free Radic Res,2017,51(4):337-350.
[10] Nuamnaichati N,Mangmool S,Chattipakorn N,et al. Stimulation of GLP-1 receptor inhibits methylglyoxal-induced mitochondrial dysfunctions in H9c2 cardiomyoblasts:potential role of Epac/PI3K/Akt Pathway[J]. Front Pharmacol,2020,11:805.
[11] Schalkwijk CG,Stehouwer CDA. Methylglyoxal,a highly reactive dicarbonyl compound,in diabetes,its vascular complications,and other age-related diseases[J]. Physiol Rev,2020,100(1):407-461.
[12] McLean BA,Wong CK,Campbell JE,et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation[J]. Endocr Rev,2021,42(2):101-132.
[13] Baggio LL,Yusta B,Mulvihill EE,et al. GLP-1 receptor expression within the human heart[J]. Endocrinology,2018,159(4):1570-1584.?/div>
[14] Clarke SJ,Giblett JP,Yang LL,et al. GLP-1 is a coronary artery vasodilator in humans[J]. J Am Heart Assoc,2018,7(22):e10321.
[15] Pyke C,Heller RS,Kirk RK,et al. GLP-1 receptor localization in monkey and human tissue:novel distribution revealed with extensively validated monoclonal antibody[J]. Endocrinology,2014,155(4):1280-1290.
[16] Kim M,Platt MJ,Shibasaki T,et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure[J]. Nat Med,2013,19(5):567-575.
[17] Martins FL,Bailey MA,Girardi ACC. Endogenous activation of glucagon-like peptide-1 receptor contributes to blood pressure control:role of proximal tubule Na+/H+exchanger isoform 3,renal angiotensinⅡ,and insulin sensitivity[J]. Hypertension,2020,76(3):839-848.
[18] Lu K,Chang G,Ye L,et al. Protective effects of extendin-4 on hypoxia/reoxygenation-induced injury in H9c2 cells[J]. Mol Med Rep,2015,12(2):3007-3016.[19] Cui X,Liang H,Hao C,et al. Liraglutide preconditioning attenuates myocardial ischemia/ reperfusion injury via homer1 activation[J]. Aging(Albany NY),2021,13(5):6625-6633.
[20] Mangmool S,Hemplueksa P,Parichatikanond W,et al. Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes[J]. Mol Endocrinol,2015,29(4):583-596. ?#160?#160
[21] Fan S,Xiong Q,Zhang X,et al. Glucagon-like peptide 1 reverses myocardial hypertrophy through cAMP/PKA/RhoA/ROCK2 signaling[J]. Acta Biochim Biophys Sin(Shanghai),2020,52(6):612-619.
[22] Rodrigues T,Borges P,Mar L,et al. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes[J]. Pharmacol Res,2020,161:105198.
[23] Jackson RN,Wiedenheft B. A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses[J]. Mol Cell,2015,58(5):722-728.
[24] Cho S,Shin J,Cho BK. Applications of CRISPR/Cas system to bacterial metabolic engineering[J]. Int J Mol Sci,2018,19(4):1089.
[25] Marfella R,Sardu C,Mansueto G,et al. Evidence for human diabetic cardiomyopathy[J]. Acta Diabetol,2021,58(8):983-988.
[26] Wang XL,Lau WB,Yuan YX,et al. Methylglyoxal increases cardiomyocyte ischemia-reperfusion injury via glycative inhibition of thioredoxin activity[J]. Am J Physiol Endocrinol Metab,2010,299(2):207-214.
[27] Ran FA,Hsu PD,Wright J,et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc,2013,8(11):2281-2308.
[28] Aravindhan K,Bao W,Harpel MR,et al. Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart[J]. PLoS One,2015,10(6):e130894.
[29] Kvansakul M,Caria S,Hinds MG. The Bcl-2 family in host-virus interactions[J]. Viruses,2017,9(10):290.
[30] Gao J,Tian X,Yan X,et al. Selenium exerts protective effects against fluoride-induced apoptosis and oxidative stress and altered the expression of Bcl-2/caspase family[J]. Biol Trace Elem Res,2021,1992(2):682-692.
[31] Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation[J]. Pathol Biol(Paris),2010,58(3):214-219.
[32] Almutairi M,Al Batran R,Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature[J]. Peptides,2019,111:26-32.
[33] Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1[J]. Acta Physiol(Oxf),2016,216(3):277-313.
[34] Phillips SA,Thornalley PJ. Formation of methylglyoxal and D-lactate in human red blood cells in vitro[J]. Biochem Soc Trans,1993,21(2):163S.

相似文献/References:

[1]许霏 王永明 沈雳.CRISPR/Cas9技术在遗传性心肌疾病研究中的进展[J].心血管病学进展,2019,(9):1229.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.011]
 XU Fei,WANG Yongming,SHEN Li.CRISPR/Cas9 Technologies in Inherited Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(9):1229.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.011]
[2]刘洪娟 徐亚伟.CRISPR/Cas9基因编辑在心血管领域的应用进展[J].心血管病学进展,2021,(12):1117.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.015]
 LIU Honghuan,XU Yawei.Application Progress of CRISPR/Cas9 Gene Editing in Cardiovascular[J].Advances in Cardiovascular Diseases,2021,(9):1117.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.015]

备注/Memo

备注/Memo:
收稿日期:2022-02-15?div>?金项目:国家自然科学基金(81573244);湖北省卫健委科研项目(WJ2021M061);十堰市科技局科研项目(21Y71);湖北医药学院人才启动金资助计划项目(2018QDJZR04)
更新日期/Last Update: 2022-10-24