[1]蔡一帆 董倩 俞坤武 曾秋棠.炎症细胞参与腹主动脉瘤的研究进展[J].心血管病学进展,2022,(7):630-635.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 CAI Yifan,Dong Qian,YU Kunwu,et al.Pathogenesis of Inflammatory Cell in Abdominal Aortic Aneurysm[J].Advances in Cardiovascular Diseases,2022,(7):630-635.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
点击复制

炎症细胞参与腹主动脉瘤的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年7期
页码:
630-635
栏目:
综述
出版日期:
2022-07-25

文章信息/Info

Title:
Pathogenesis of Inflammatory Cell in Abdominal Aortic Aneurysm
文章编号:
202201002
作者:
蔡一帆 董倩 俞坤武 曾秋棠
(华中科技大学附属协和医院,湖北 武汉 430000)
Author(s):
CAI YifanDong QianYU KunwuZENG Qiutang
(Union Hospital,Huazhong University of Science and Technology,Wuhan 430000,Hubei,China)
关键词:
腹主动脉瘤炎症反应免疫细胞平滑肌细胞内皮细胞
Keywords:
Abdominal aortic aneurysminflammatory reactionImmunocyteSmooth muscle cellEndothelial cell
DOI:
10.16806/j.cnki.issn.1004-3934.2022.07.000
摘要:
腹主动脉瘤(AAA)发生和发展的主要机制包括炎症反应、平滑肌细胞凋亡、细胞外基质降解。其中,平滑肌细胞凋亡又与炎症、氧化应激和内质网应激密切相关。越来越多的证据表明,炎症反应是AAA的主要始发因素,对AAA的发生和发展起着至关重要的作用。现就AAA与炎症细胞的最新研究进展予以综述。
Abstract:
The main mechanisms of the occurrence and development of abdominal aortic aneurysm(AAA) include inflammation,apoptosis of smooth muscle cell and degradation of extracellular matrix. Among them,apoptosis of smooth muscle cell?is closely related to inflammation,oxidative stress and endoplasmic reticulum stress.?More and more evidence indicates that inflammatory reaction is the main originator of AAA and plays a crucial role in the occurrence and development of AAA.?This article reviews the latest research progress of AAA and inflammatory cell.

参考文献/References:

[1] Sawada H,Lu HS,C assis LA,et al. Twenty years of studying Ang Ⅱ(angiotensin Ⅱ)-induced abdominal aortic pathologies in mice:continuing questions and challenges to provide insight into the human disease[J]. Arterioscler Thromb Vasc Biol,2022,42(3):277-288.

[2] 李辉,李娟,王振东,等. 主动脉腔内修复术后发生脊髓缺血损伤相关危险因素分析[J]. 中国介入心脏病学杂志,2020,28(5):252-256.

[3] Xie S,M a L,G uan H,et al. Daphnetin suppresses experimental abdominal aortic aneurysms in mice via inhibition of aortic mural inflammation[J]. Exp Ther Med,2020,20(6):221.

[4] Vandestienne M,Z hang Y,S antos-Zas I,et al. TREM-1 orchestrates angiotensin Ⅱ-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm[J]. J Clin Invest,2021,131(2):e142468.

[5] Mellak S,Ait-Oufella H,Esposito B,et al. Angiotensin Ⅱ mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe-/- mice[J]. Arterioscler Thromb Vasc Biol,2015,35(2):378-388.

[6] Raffort J,L areyre F,C lément M,et al. Monocytes and macrophages in abdominal aortic aneurysm[J]. Nat Rev Cardiol,2017,14(8):457- 471.

[7] Moran CS,J ose RJ,M oxon JV,et al. Everolimus limits aortic aneurysm in the apolipoprotein E-deficient mouse by downregulating C-C chemokine receptor 2 positive monocytes[J]. Arterioscler Thromb Vasc Biol,2013,33(4):814- 821.

[8] Batra R,S uh MK,C arson JS,et al. IL-1β(interleukin-1β) and TNF-α(tumor necrosis factor-α) impact abdominal aortic aneurysm formation by differential effects on macrophage polarization[J]. Arterioscler Thromb Vasc Biol,2018,38(2):457-463.

[9] Pope NH,Salmon M,Davis JP,et al. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization[J]. FASEB J,2016,30(12):4192-4201.

[10] Cheng J,Koenig SN,Kuivaniemi HS,et al. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model[J]. J Am Heart Assoc,2014,3(6):e001064.

[11] Wang H,W ei G,C heng S,et al. Circulatory CD4-positive T-lymphocyte imbalance mediated by homocysteine-induced AIM2 and NLRP1 inflammasome upregulation and activation is associated with human abdominal aortic aneurysm[J]. J Vasc Res,2020,57(5):276-290.

[12] Xiong W,Zhao Y,Prall A,et al. Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model[J]. J Immunol,2004,172(4):2607-2612.

[13] Jab?ońska A,N eumayer C,B olliger M,et al. Insight into the expression of toll-like receptors 2 and 4 in patients with abdominal aortic aneurysm[J]. Mol Biol Rep,2020,47(4):2685- 2692.

[14] Zhou HF,Y an H,C annon JL,et al. CD43-mediated IFN-γ production by CD8 + T cells promotes abdominal aortic aneurysm in mice[J]. J Immunol,2013,190(10):5078-5085.

[15] Yodoi K,Yamashita T,Sasaki N,et al. Foxp3+ regulatory T cells play a protective role in angiotensin Ⅱ-induced aortic aneurysm formation in mice[J]. Hypertension,2015,65(4):889-895.

[16] Meng X,Y ang J,Z hang K,et al. Regulatory T cells prevent angiotensin Ⅱ-induced abdominal aortic aneurysm in apolipoprotein E knockout mice[J]. Hypertension,2014,64(4):875-882.

[17] Jiang H,Xin S,Yan Y,et al. Abnormal acetylation of FOXP3 regulated by SIRT-1 induces Treg functional deficiency in patients with abdominal aortic aneurysms[J]. Atherosclerosis,2018,271:182-192.

[18] Zhou Y,W u W,L indholt JS,et al. Regulatory T cells in human and angiotensin Ⅱ-induced mouse abdominal aortic aneurysms[J]. Cardiovasc Res,2015,107(1):98-107.

[19] Suh MK,B atra R,C arson JS,et al. Ex?vivo expansion of regulatory T cells from abdominal aortic aneurysm patients inhibits aneurysm in humanized murine model[J]. J Vasc Surg,2020,72(3):1087-1096.e1.

[20] Schaheen B,Downs EA,Serbulea V,et al. B-cell depletion promotes aortic infiltration of immunosuppressive cells and is protective of experimental aortic aneurysm[J]. Arterioscler Thromb Vasc Biol,2016,36(11):2191-2202.

[21] Meher AK,Johnston WF,Lu G,et al. B2 cells suppress experimental abdominal aortic aneurysms[J]. Am J Pathol,2014,184(11):3130-3141.

[22] Guo W,G ao R,Z hang W,et al. IgE aggravates the senescence of smooth muscle cells in abdominal aortic aneurysm by upregulating LincRNA-p21[J]. Aging Dis,2019,10(4):699-710.

[23] W?gs?ter D,R amilo AB,N? sstr?m M,et al. miR-10b promotes aortic aneurysm formation and aortic rupture in angiotensin Ⅱ-induced ApoE-deficient mice [J]. Vascul Pharmacol,2021,141:106927.

[24] Gao R,L iu D,G uo W,et al. Meprin-α(Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms[J]. Br J Pharmacol,2020,177(12):2872- 2885.

[25] Dubis J,N iepiek?o-Miniewska W,J ?druchniewicz N,et al. Associations of genes for killer cell immunoglobulin-like receptors and their human leukocyte antigen-A/B/C ligands with abdominal aortic aneurysm[J]. Cells,2021,10(12):3357.

[26] Boyle JJ,W eissberg PL,B ennett MR. Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms[J]. Arterioscler Thromb Vasc Biol,2003,23(9):1553- 1558.

[27] Hadi T,B oytard L,S ilvestro M,et al. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells[J]. Nat Commun,2018,9(1):5022.

[28] Gurung R,Choong AM,Woo CC,et al. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm[J]. Int J Mol Sci,2020,21(17):6334.

[29] Akerman AW,S troud RE,B arrs RW,et al. Elevated wall tension initiates interleukin-6 expression and abdominal aortic dilation[J]. Ann Vasc Surg,2018,46:193-204.

[30] Yan D,M a H,S hi W,et al. Bazedoxifene attenuates abdominal aortic aneurysm formation via downregulation of interleukin-6/glycoprotein 130/signal transducer and activator of transcription 3 signaling pathway in apolipoprotein E-knockout mice[J]. Front Pharmacol,2020,11:392.

[31] Ramella M,B occafoschi F,B ellofatto K,et al. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm(AAA)[J]. Am J Transl Res,2017,9(12):5485-5495.

[32] Saito T,H asegawa Y,I shigaki Y,et al. Importance of endothelial NF-κB signalling in vascular remodelling and aortic aneurysm formation[J]. Cardiovasc Res,2013,97(1):106- 114.

[33] Ridker PM,E verett BM,T huren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119- 1131.

[34] Shah B,P illinger M,Z hong H,et al. Effects of acute colchicine administration prior to percutaneous coronary intervention:COLCHICINE-PCI randomized trial[J]. Circ Cardiovasc Interv,2020,13(4):e008717.

相似文献/References:

[1]王山山 梁兆光.炎症反应与心房颤动的关系[J].心血管病学进展,2019,(5):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
 WANG Shanshan,LIANG Zhaoguang.Inflammation and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(7):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
[2]李文松 张润峰.脂蛋白相关磷脂酶与冠心病的相关性研究进展[J].心血管病学进展,2020,(1):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
 LI Wensong ZHANG Runfeng.Lipoprotein-associated Phospholipase A2 and Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(7):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(7):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(7):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[5]李德霞 李琳.白介素-1β与心力衰竭的研究进展[J].心血管病学进展,2020,(6):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
 LI Dexia LI Lin.Interleukin-1 and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(7):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
[6]冯松林 余皓 吴欣择 李朝阳 施森.MicroRNA在腹主动脉瘤发生和发展中的调控机制[J].心血管病学进展,2020,(11):1168.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 Abdominal Aortic Aneurysm.Regulatory Mechanism of MicroRNA in Occurrence and Development of[J].Advances in Cardiovascular Diseases,2020,(7):1168.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[7]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
 ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(7):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
[8]肖秋蓓 王志维.急性主动脉夹层并发急性肺损伤研究进展[J].心血管病学进展,2020,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
 XIAO QiubeiWANG Zhiwei.Acute Aortic Dissection Complicated with Acute Lung Injury[J].Advances in Cardiovascular Diseases,2020,(7):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
[9]张国贤 彭瑜 张钲.冠状动脉内皮细胞线粒体损伤在心肌梗死中的研究进展[J].心血管病学进展,2023,(3):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]
 ZHANG Guoxian,PENG Yu,ZHANG Zheng.Mitochondrial Injury of Coronary Endothelial Cells in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(7):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]
[10]耿璐 王丽娟 鲁静朝.银屑病影响心房颤动的发生及可能机制[J].心血管病学进展,2024,(2):163.[doi:10.16806/j.cnki.issn.1004-3934.202.02.014]
 GENG Lu,WANG Lijuan,LU Jingchao.Psoriasis Affects the Occurrence of Atrial Fibrillation and Possible Mechanisms[J].Advances in Cardiovascular Diseases,2024,(7):163.[doi:10.16806/j.cnki.issn.1004-3934.202.02.014]

更新日期/Last Update: 2022-08-22