参考文献/References:
[1] Sawada H,Lu HS,C assis LA,et al. Twenty years of studying Ang Ⅱ(angiotensin Ⅱ)-induced abdominal aortic pathologies in mice:continuing questions and challenges to provide insight into the human disease[J]. Arterioscler Thromb Vasc Biol,2022,42(3):277-288.
[2] 李辉,李娟,王振东,等. 主动脉腔内修复术后发生脊髓缺血损伤相关危险因素分析[J]. 中国介入心脏病学杂志,2020,28(5):252-256.
[3] Xie S,M a L,G uan H,et al. Daphnetin suppresses experimental abdominal aortic aneurysms in mice via inhibition of aortic mural inflammation[J]. Exp Ther Med,2020,20(6):221.
[4] Vandestienne M,Z hang Y,S antos-Zas I,et al. TREM-1 orchestrates angiotensin Ⅱ-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm[J]. J Clin Invest,2021,131(2):e142468.
[5] Mellak S,Ait-Oufella H,Esposito B,et al. Angiotensin Ⅱ mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe-/- mice[J]. Arterioscler Thromb Vasc Biol,2015,35(2):378-388.
[6] Raffort J,L areyre F,C lément M,et al. Monocytes and macrophages in abdominal aortic aneurysm[J]. Nat Rev Cardiol,2017,14(8):457- 471.
[7] Moran CS,J ose RJ,M oxon JV,et al. Everolimus limits aortic aneurysm in the apolipoprotein E-deficient mouse by downregulating C-C chemokine receptor 2 positive monocytes[J]. Arterioscler Thromb Vasc Biol,2013,33(4):814- 821.
[8] Batra R,S uh MK,C arson JS,et al. IL-1β(interleukin-1β) and TNF-α(tumor necrosis factor-α) impact abdominal aortic aneurysm formation by differential effects on macrophage polarization[J]. Arterioscler Thromb Vasc Biol,2018,38(2):457-463.
[9] Pope NH,Salmon M,Davis JP,et al. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization[J]. FASEB J,2016,30(12):4192-4201.
[10] Cheng J,Koenig SN,Kuivaniemi HS,et al. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model[J]. J Am Heart Assoc,2014,3(6):e001064.
[11] Wang H,W ei G,C heng S,et al. Circulatory CD4-positive T-lymphocyte imbalance mediated by homocysteine-induced AIM2 and NLRP1 inflammasome upregulation and activation is associated with human abdominal aortic aneurysm[J]. J Vasc Res,2020,57(5):276-290.
[12] Xiong W,Zhao Y,Prall A,et al. Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model[J]. J Immunol,2004,172(4):2607-2612.
[13] Jab?ońska A,N eumayer C,B olliger M,et al. Insight into the expression of toll-like receptors 2 and 4 in patients with abdominal aortic aneurysm[J]. Mol Biol Rep,2020,47(4):2685- 2692.
[14] Zhou HF,Y an H,C annon JL,et al. CD43-mediated IFN-γ production by CD8 + T cells promotes abdominal aortic aneurysm in mice[J]. J Immunol,2013,190(10):5078-5085.
[15] Yodoi K,Yamashita T,Sasaki N,et al. Foxp3+ regulatory T cells play a protective role in angiotensin Ⅱ-induced aortic aneurysm formation in mice[J]. Hypertension,2015,65(4):889-895.
[16] Meng X,Y ang J,Z hang K,et al. Regulatory T cells prevent angiotensin Ⅱ-induced abdominal aortic aneurysm in apolipoprotein E knockout mice[J]. Hypertension,2014,64(4):875-882.
[17] Jiang H,Xin S,Yan Y,et al. Abnormal acetylation of FOXP3 regulated by SIRT-1 induces Treg functional deficiency in patients with abdominal aortic aneurysms[J]. Atherosclerosis,2018,271:182-192.
[18] Zhou Y,W u W,L indholt JS,et al. Regulatory T cells in human and angiotensin Ⅱ-induced mouse abdominal aortic aneurysms[J]. Cardiovasc Res,2015,107(1):98-107.
[19] Suh MK,B atra R,C arson JS,et al. Ex?vivo expansion of regulatory T cells from abdominal aortic aneurysm patients inhibits aneurysm in humanized murine model[J]. J Vasc Surg,2020,72(3):1087-1096.e1.
[20] Schaheen B,Downs EA,Serbulea V,et al. B-cell depletion promotes aortic infiltration of immunosuppressive cells and is protective of experimental aortic aneurysm[J]. Arterioscler Thromb Vasc Biol,2016,36(11):2191-2202.
[21] Meher AK,Johnston WF,Lu G,et al. B2 cells suppress experimental abdominal aortic aneurysms[J]. Am J Pathol,2014,184(11):3130-3141.
[22] Guo W,G ao R,Z hang W,et al. IgE aggravates the senescence of smooth muscle cells in abdominal aortic aneurysm by upregulating LincRNA-p21[J]. Aging Dis,2019,10(4):699-710.
[23] W?gs?ter D,R amilo AB,N? sstr?m M,et al. miR-10b promotes aortic aneurysm formation and aortic rupture in angiotensin Ⅱ-induced ApoE-deficient mice [J]. Vascul Pharmacol,2021,141:106927.
[24] Gao R,L iu D,G uo W,et al. Meprin-α(Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms[J]. Br J Pharmacol,2020,177(12):2872- 2885.
[25] Dubis J,N iepiek?o-Miniewska W,J ?druchniewicz N,et al. Associations of genes for killer cell immunoglobulin-like receptors and their human leukocyte antigen-A/B/C ligands with abdominal aortic aneurysm[J]. Cells,2021,10(12):3357.
[26] Boyle JJ,W eissberg PL,B ennett MR. Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms[J]. Arterioscler Thromb Vasc Biol,2003,23(9):1553- 1558.
[27] Hadi T,B oytard L,S ilvestro M,et al. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells[J]. Nat Commun,2018,9(1):5022.
[28] Gurung R,Choong AM,Woo CC,et al. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm[J]. Int J Mol Sci,2020,21(17):6334.
[29] Akerman AW,S troud RE,B arrs RW,et al. Elevated wall tension initiates interleukin-6 expression and abdominal aortic dilation[J]. Ann Vasc Surg,2018,46:193-204.
[30] Yan D,M a H,S hi W,et al. Bazedoxifene attenuates abdominal aortic aneurysm formation via downregulation of interleukin-6/glycoprotein 130/signal transducer and activator of transcription 3 signaling pathway in apolipoprotein E-knockout mice[J]. Front Pharmacol,2020,11:392.
[31] Ramella M,B occafoschi F,B ellofatto K,et al. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm(AAA)[J]. Am J Transl Res,2017,9(12):5485-5495.
[32] Saito T,H asegawa Y,I shigaki Y,et al. Importance of endothelial NF-κB signalling in vascular remodelling and aortic aneurysm formation[J]. Cardiovasc Res,2013,97(1):106- 114.
[33] Ridker PM,E verett BM,T huren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119- 1131.
[34] Shah B,P illinger M,Z hong H,et al. Effects of acute colchicine administration prior to percutaneous coronary intervention:COLCHICINE-PCI randomized trial[J]. Circ Cardiovasc Interv,2020,13(4):e008717.
相似文献/References:
[1]王山山 梁兆光.炎症反应与心房颤动的关系[J].心血管病学进展,2019,(5):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
WANG Shanshan,LIANG Zhaoguang.Inflammation and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(7):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
[2]李文松 张润峰.脂蛋白相关磷脂酶与冠心病的相关性研究进展[J].心血管病学进展,2020,(1):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
LI Wensong ZHANG Runfeng.Lipoprotein-associated Phospholipase A2 and Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(7):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(7):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(7):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[5]李德霞 李琳.白介素-1β与心力衰竭的研究进展[J].心血管病学进展,2020,(6):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
LI Dexia LI Lin.Interleukin-1 and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(7):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
[6]冯松林 余皓 吴欣择 李朝阳 施森.MicroRNA在腹主动脉瘤发生和发展中的调控机制[J].心血管病学进展,2020,(11):1168.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
Abdominal Aortic Aneurysm.Regulatory Mechanism of MicroRNA in Occurrence and Development of[J].Advances in Cardiovascular Diseases,2020,(7):1168.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[7]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(7):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
[8]肖秋蓓 王志维.急性主动脉夹层并发急性肺损伤研究进展[J].心血管病学进展,2020,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
XIAO QiubeiWANG Zhiwei.Acute Aortic Dissection Complicated with Acute Lung Injury[J].Advances in Cardiovascular Diseases,2020,(7):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
[9]张国贤 彭瑜 张钲.冠状动脉内皮细胞线粒体损伤在心肌梗死中的研究进展[J].心血管病学进展,2023,(3):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]
ZHANG Guoxian,PENG Yu,ZHANG Zheng.Mitochondrial Injury of Coronary Endothelial Cells in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(7):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]
[10]耿璐 王丽娟 鲁静朝.银屑病影响心房颤动的发生及可能机制[J].心血管病学进展,2024,(2):163.[doi:10.16806/j.cnki.issn.1004-3934.202.02.014]
GENG Lu,WANG Lijuan,LU Jingchao.Psoriasis Affects the Occurrence of Atrial Fibrillation and Possible Mechanisms[J].Advances in Cardiovascular Diseases,2024,(7):163.[doi:10.16806/j.cnki.issn.1004-3934.202.02.014]