参考文献/References:
[1] Mulpuru SK,Madhavan M,McLeod CJ,et al. Cardiac pacemakers:function,troubleshooting,and management:part 1 of a 2-part series[J]. J Am Coll Cardiol,2017,69(2):189-210.
[2] Saito Y,Nakamura K,Yoshida M,et al. Enhancement of spontaneous activity by HCN4 overexpression in mouse embryonic stem cell-derived cardiomyocytes—A possible biological pacemaker[J]. PLoS One,2015,10(9):e138193.
[3] Kraus F,Haenig B,Kispert A. Cloning and expression analysis of the mouse T-box gene Tbx18[J]. Mech Dev,2001,100(1):83-86.
[4] Wiese C,Grieskamp T,Airik R,et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3[J]. Circ Res,2009,104(3):388-397.
[5] Engleka KA,Manderfield LJ,Brust RD,et al. Islet1 derivatives in the heart are of both neural crest and second heart field origin[J]. Circ Res,2012,110(7):922-926.
[6] Pandur P,Sirbu IO,Kühl SJ,et al. Islet1-expressing cardiac progenitor cells:a comparison across species[J]. Dev Genes Evol,2013,223(1-2):117-129.
[7] Espinoza-Lewis RA,Yu L,He F,et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5[J]. Dev Biol,2009,327(2):376-385.
[8] Barbuti A,Robinson RB. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool:insights from sinoatrial node development and function[J]. Pharmacol Rev,2015,67(2):368-388.
[9] Hashem SI,Lam ML,Mihardja SS,et al. Shox2 regulates the pacemaker gene program in embryoid bodies[J]. Stem Cells Dev,2013,22(21):2915-2926.
[10] Shi W,Wymore R,Yu H,et al. Distribution and prevalence of hyperpolarization-activated cation channel(HCN) mRNA expression in cardiac tissues[J]. Circ Res,1999,85(1):e1-e6.
[11] Verkerk AO,Wilders R. Hyperpolarization-activated current,If,in mathematical models of rabbit sinoatrial node pacemaker cells[J]. Biomed Res Int,2013,2013:872454.
[12] Kaupp UB,Seifert R. Molecular diversity of pacemaker ion channels[J]. Annu Rev Physiol,2001,63:235-257.
[13] Gorabi AM,Hajighasemi S,Tafti HA,et al. TBX18 transcription factor overexpression in human-induced pluripotent stem cells increases their differentiation into pacemaker-like cells[J]. J Cell Physiol,2019,234(2):1534-1546.
[14] Boink GJ,Christoffels VM,Robinson RB,et al. The past,present,and future of pacemaker therapies[J]. Trends Cardiovasc Med,2015,25(8):661-673.
[15] Cingolani E,Goldhaber JI,Marbán E. Next-generation pacemakers:from small devices to biological pacemakers[J]. Nat Rev Cardiol,2018,15(3):139-150.
[16] Ionta V,Liang W,Kim EH,et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells,improving biological pacing ability[J]. Stem Cell Reports,2015,4(1):129-142.
[17] Kapoor N,Liang W,Marbán E,et al. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18[J]. Nat Biotechnol,2013,31(1):54-62.
[18] Bakker ML,Boink GJJ,Boukens BJ,et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells[J]. Cardiovasc Res,2012,94(3):439-449.
[19] Zhang J,Yang M,Yang AK,et al. Insulin gene enhancer binding protein 1 induces adipose tissue-derived stem cells to differentiate into pacemaker-like cells[J]. Int J Mol Med,2019,43(2):879-889.
[20] Yang M,Zhang GG,Wang T,et al. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment[J]. Int J Mol Med,2016,38(5):1403-1410.
[21] Zhang J,Huang C. A new combination of transcription factors increases the harvesting efficiency of pacemaker?like cells[J]. Mol Med Rep,2019,19(5):3584-3592.
[22] Boogerd CJ,Wong LY,van den Boogaard M,et al. Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43[J]. Cell Mol Life Sci,2011,68(23):3949-3961.
[23] Zhao H,Wang F,Zhang W,et al. Overexpression of TBX3 in human induced pluripotent stem cells(hiPSCs) increases their differentiation into cardiac pacemaker-like cells[J]. Biomed Pharmacother,2020,130:110612.
[24] Zhao H,Wang F,Tang Y,et al. HCN2 and TBX3 reprogram human-induced pluripotent stem cells-derived cardiomyocytes into pacemaker-like cells[J]. DNA Cell Biol,2020,39(2):289-298.
[25] Raghunathan S,Islas JF,Mistretta B,et al. Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells[J]. J Mol Cell Cardiol,2020,138:12-22.
[26] Klaus A,Müller M,Schulz H,et al. Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells[J]. Proc Natl Acad Sci U S A , 2012,109(27):10921-10926.
[27] Klaus A,Saga Y,Taketo MM,et al. Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis[J]. Proc Natl Acad Sci U S A,2007,104(47):18531-18536.
[28] Cohen ED,Tian Y,Morrisey EE. Wnt signaling:an essential regulator of cardiovascular differentiation,morphogenesis and progenitor self-renewal[J]. Development,2008,135(5):789-798.
[29] Zhang H,Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development[J]. Development,1996,122(10):2977-2986.
[30] Solloway MJ,Robertson EJ. Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup[J]. Development,1999,126(8):1753-1768.
[31] Liang W,Han P,Kim EH,et al. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells[J]. Stem Cells,2020,38(3):352-368.
[32] Ren J,Han P,Ma X,et al. Canonical Wnt5b signaling directs outlying Nkx2.5+ mesoderm into pacemaker cardiomyocytes[J]. Dev Cell,2019,50(6):729-743.
[33] Lian X,Hsiao C,Wilson G,et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling[J]. Proc Natl Acad Sci U S A, 2012,109(27):E1848-E1857.
[34] Protze SI,Liu J,Nussinovitch U,et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker[J]. Nat Biotechnol,2017,35(1):56-68.
[35] Lee JH,Protze SI,Laksman Z,et al. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations[J]. Cell Stem Cell,2017,21(2):179-194.
[36] Hu YF,Dawkins JF,Cho HC,et al. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block[J]. Sci Transl Med,2014,6(245):245ra94.