参考文献/References:
[1]Hamdani N,Costantino S,Mügge A,et al. Leveraging clinical epigenetics in heart failure with preserved ejection fraction:a call for individualized therapies[J]. Eur Heart J,2021,42(20):1940-1958.
[2]Qin Y,Li L,Luo E,et al. Role of m6A RNA methylation in cardiovascular disease(Review)[J]. Int J Mol Med,2020,46 (6):1958-1972.
[3]Zhao K,Yang CX,Li P,et al. Epigenetic role of N6-methyladenosine(m6A) RNA methylation in the cardiovascular system[J]. J Zhejiang Univ Sci B,2020,21(7):509-523.
[4]Berulava T,Buchholz E,Elerdashvili V,et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation[J]. Eur J Heart Fail,2020,22(1):54-66.
[5]Hinger SA,Wei J,Dorn LE,et al. Remodeling of the m6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol,2021,151:46-55.
[6]Zhang B,Xu Y,Cui X,et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction[J]. Front Cardiovasc Med,2021,8:647806.
[7]Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction:comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.
[8]Dorn LE,Lasman L,Chen J,et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation,2019,139(4):533-545.
[9]Gao XQ,Zhang YH,Liu F,et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA[J]. Nat Cell Biol,2020,22(11):1319-1331.
[10]Shen W,Li H,Su H,et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt[J]. Mol Cell Biochem,2021,476(5):2171-2179.
[11]Longenecker JZ,Gilbert CJ,Golubeva VA,et al. Epitranscriptomics in the heart:a focus on m6A [J]. Curr Heart Fail Rep,2020,17(5):205-212.
[12]Chen YS,Ouyang XP,Yu XH,et al. N6-Adenosine methylation(m6A) RNA modification:an emerging role in cardiovascular diseases[J]. J Cardiovasc Transl Res,2021,14(5):857-872.
[13]Li X,Yang Y,Chen S,et al. Epigenetics-based therapeutics for myocardial fibrosis[J]. Life Sci,2021,271:119186.
[14]Mathiyalagan P,Adamiak M,Mayourian J,et al. FTO-dependent N6 -methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation,2019,139 (4):518-532.
[15]Yang HJ,Kong B,Shuai W,et al. MD1 deletion exaggerates cardiomyocyte autophagy induced by heart failure with preserved ejection fraction through ROS/MAPK signalling pathway[J]. J Cell Mol Med,2020,24(16):9300-9312.
[16]Song H,Feng X,Zhang H,et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA,which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy,2019,15(8):1419-1437.
[17]Jin S,Zhang X,Miao Y,et al. m6A RNA modification controls autophagy through upregulating ULK1 protein abundance[J]. Cell Res,2018,28(9):955-957.
[18]Komal S,Zhang LR,Han SN. Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases[J]. Biomed Pharmacother,2021,137:111376.
[19]Huangfu N,Zheng W,Xu Z,et al. RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis[J]. Int Immunopharmacol,2020,83:106432.
[20]Yu R,Li Q,Feng Z,et al. m6A reader YTHDF2 regulates LPS-induced inflammatory response[J]. Int J Mol Sci,2019,20(6):1323.
[21]Raffin C,Vo LT,Bluestone JA. Treg cell-based therapies:challenges and perspectives[J]. Nat Rev Immunol,2020,20(3):158-172.
[22]Tong J,Cao G,Zhang T,et al. m6A mRNA methylation sustains Treg suppressive functions[J]. Cell Res,2018,28(2):253-256.
[23]van der Pol A,Gil A,Tromp J,et al. OPLAH ablation leads to accumulation of 5-oxoproline,oxidative stress,fibrosis,and elevated fillings pressures:a murine model for heart failure with a preserved ejection fraction[J]. Cardiovasc Res,2018,114(14):1871-1882.
[24]Ibá?ez B,Heusch G,Ovize M,et al. Evolving therapies for myocardial ischemia/reperfusion injury [J]. J Am Coll Cardiol,2015,65(14):1454-1471.
[25]Chen X,Yu C,Guo M,et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death[J]. ACS Chem Neurosci,2019,10(5):2355-2363.
[26]Xie W,Ma LL,Xu YQ,et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun,2019,518(1):120-126.
[27]Mo X,Lei S,Zhang Y,et al. Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci [J]. Pharmacogenomics J,2019,19(4):347-357.
[28]Hu Y,Feng Y,Zhang L,et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J]. RNA Biol,2020,17(7):930-942.
[29]Tromp J,Westenbrink BD,Ouwerkerk W,et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction[J]. J Am Coll Cardiol,2018,72(10):1081-1090.