[1]马倩 刘永铭 苟春丽.新型生物标志物microRNA在射血分数保留的心衰中的研究进展[J].心血管病学进展,2021,(10):901.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.009]
 MA Qian,LIU Yongming,GOU Chunli.New Biomarker microRNA of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2021,(10):901.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.009]
点击复制

新型生物标志物microRNA在射血分数保留的心衰中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年10期
页码:
901
栏目:
综述
出版日期:
2021-10-25

文章信息/Info

Title:
New Biomarker microRNA of Heart Failure with Preserved Ejection Fraction
作者:
马倩1 刘永铭2 苟春丽2
(1.兰州大学第一临床医学院,甘肃 兰州 730000 ;2.兰州大学第一医院老年心血管科 甘肃省老年疾病临床医学研究中心,甘肃 兰州 730000)
Author(s):
MA Qian1LIU Yongming2GOU Chunli2
(1.The First Clinical Medical College of Lanzhou University,Lanzhou 730000,Gansu,China;2.Department of Geriatric Cardiology,First Hospital of Lanzhou University/Clinical Medical Research Center of Geriatric Diseases of Gansu Province,Lanzhou 730000,Gansu,China)
关键词:
微核糖核酸射血分数保留的心衰病理生理
Keywords:
microRNAHeart failure with preserved ejection fraction Pathophysiology
DOI:
10.16806/j.cnki.issn.1004-3934.2021.10.009
摘要:
射血分数保留的心衰(HFpEF)已成为心力衰竭的主要类型,目前诊断和治疗仍存在问题,引起临床广泛关注。近年发现microRNA(miRNA)参与多个HFpEF的病理生理过程,有望成为HFpEF患者诊断、预后、分层管理和评估个体化治疗反应最具潜力的生物标志物。本文将对新型生物标志物miRNA的生物学特性与HFpEF关系,其参与的重要病理生理学机制以及应用于临床的价值进行综述,以供基础和临床深入研究参考。
Abstract:
Heart failure with preserved ejection fraction(HFpEF) has become the main type of heart failure,and there are still problems in diagnosis and treatment. In recent years,it has been found that microRNA(miRNA) is involved in multiple pathophysiological processes of HFpEFand it is expected to become the most potential biomarker for diagnosis,prognosis,stratified management and evaluation of individualized treatment response in patients with . In this paperwe will review the relationship between the biological characteristics of new biomarkers miRNA and the important pathophysiological mechanisms involved in the miRNA and its clinical application value,so as to provide reference for basic and clinical in-depth research.

参考文献/References:

[1] Marketou ME,KontarakiJE,Maragkoudakis S,et al. MicroRNAs in peripheral mononuclear cells as potential biomarkers in hypertensive patients with heart failure with preserved ejection fraction[J]. Am J Hypertens,2018,31(6):651-657.

[2] Michalska-Kasiczak M,Bielecka-Dabrowa A,von Haehling S,et al. Biomarkers,myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: an overview [J]. Arch Med Sci,2018,14(4):890-909.

[3] Zhang L,Xu RL,Liu SX,et al. Diagnostic value of circulating microRNA-19b in heart failure[J]. Eur J Clin Invest,2020,50(11):e13308.

[4] Caravia XM,Fanjul V,Oliver E,et al. The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function[J]. PLoS Biol,2018,16(10):e2006247.

[5] Li DM,Li BX,Yang LJ,et al. Diagnostic value of circulating microRNA-208a in differentiation of preserved from reduced ejection fraction heart failure[J]. Heart Lung,2021,50(1):71-74.

[6] Loffredo FS,Nikolova AP,Pancoast JR,et al. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium[J]. Circ Res,2014,115(1):97-107.

[7] Chen YT,Wong LL,Liew OW,et al. Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): the diagnostic value of circulating microRNAs[J]. Cells,2019,8(12):1651.

[8] Rech M,Barandiarán Aizpurua A,van Empel V,et al. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle[J]. Cardiovasc Res,2018,114(6):782-793.

[9] Lindman BR. The diabetic heart failure with preserved ejection fraction phenotype: is it real and is it worth targeting therapeutically? [J]. Circulation,2017,135(8):736-740.

[10] Sárk?zy M,Gáspár R,Zvara ?,et al. Chronic kidney disease induces left ventricular overexpression of the pro-hypertrophic microRNA-212[J]. Sci Rep,2019,9(1):1302.

[11] Todd N,Lai YC. Current understanding of circulating biomarkers in pulmonary hypertension due to left heart disease[J]. Front Med (Lausanne),2020,7:570016.

[12] Ueda K,Lu Q,Baur W,et al. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation[J]. Arterioscler Thromb Vasc Biol,2013,33(8):1837-1843.

[13] Shenouda SM,Widlansky ME,Chen K,et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus[J]. Circulation,2011,124(4):444-453.

[14] Florijn BW,Bijkerk R,van der Veer EP,et al. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? [J]. Cardiovasc Res,2018,114(2):210-225.

[15] Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.

[16] Gevaert AB,Boen JRA,Segers VF,et al. Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology[J]. Front Physiol,2019,10:638.

[17] Dong S,Ma W,Hao B,et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2[J]. Int J Clin Exp Pathol,2014,7(2):565-574.

[18] Ben-Nun D,Buja LM,Fuentes F. Prevention of heart failure with preserved ejection fraction (HFpEF): reexamining microRNA-21 inhibition in the era of oligonucleotide-based therapeutics[J]. Cardiovasc Pathol,2020,49:107243.

[19] Nabeebaccus A,Zheng S,Shah AM. Heart failure-potential new targets for therapy[J]. Br Med Bull,2016,119(1):99-110.

[20] Ikeda S,He A,Kong SW,et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes l[J]. Mol Cell Bio,2009 ,29(8):2193-2204.

[21] Gurha P,Abreu-Goodger C,Wang T,et al. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction[J]. Circulation,2012,125(22): 2751-2761.

[22] Chen F,Yang J,Li Y,et al. Circulating microRNAs as novel biomarkers for heart failure[J]. Hellenic J Cardiol,2018,59(4):209-214.

[23] Wong LL,Zou R,Zhou L,et al. Combining circulating microRNA and?NT-proBNP to detect and categorize?heart failure subtypes[J]. J Am Coll Cardiol,2019,73(11):1300-1313.

[24] Wong LL,Armugam A,Sepramaniam S,et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction[J]. Eur J Heart Fail,2015,17(4):393-404.

[25] Watson CJ,Gupta SK,O’Connell E,et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure[J]. Eur J Heart Fail,2015,17(4):405-415.

[26] Tsch?pe C,Birner C,B?hm M,et al. Heart failure with preserved ejection fraction: current management and future strategies: expert opinion on the behalf of the Nucleus of the "Heart Failure Working Group" of the German Society of Cardiology (DKG) [J] . Clin Res Cardiol,2018,107(1):1-19.

[27] Schmitter D,Voors AA,van der Harst P. HFpEF vs. HFrEF: can microRNAs advance the diagnosis? [J]. Eur J Heart Fail,2015,17(4):351-354.

更新日期/Last Update: 2021-12-02