参考文献/References:
[1] Marketou ME,KontarakiJE,Maragkoudakis S,et al. MicroRNAs in peripheral mononuclear cells as potential biomarkers in hypertensive patients with heart failure with preserved ejection fraction[J]. Am J Hypertens,2018,31(6):651-657.
[2] Michalska-Kasiczak M,Bielecka-Dabrowa A,von Haehling S,et al. Biomarkers,myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: an overview [J]. Arch Med Sci,2018,14(4):890-909.
[3] Zhang L,Xu RL,Liu SX,et al. Diagnostic value of circulating microRNA-19b in heart failure[J]. Eur J Clin Invest,2020,50(11):e13308.
[4] Caravia XM,Fanjul V,Oliver E,et al. The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function[J]. PLoS Biol,2018,16(10):e2006247.
[5] Li DM,Li BX,Yang LJ,et al. Diagnostic value of circulating microRNA-208a in differentiation of preserved from reduced ejection fraction heart failure[J]. Heart Lung,2021,50(1):71-74.
[6] Loffredo FS,Nikolova AP,Pancoast JR,et al. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium[J]. Circ Res,2014,115(1):97-107.
[7] Chen YT,Wong LL,Liew OW,et al. Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): the diagnostic value of circulating microRNAs[J]. Cells,2019,8(12):1651.
[8] Rech M,Barandiarán Aizpurua A,van Empel V,et al. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle[J]. Cardiovasc Res,2018,114(6):782-793.
[9] Lindman BR. The diabetic heart failure with preserved ejection fraction phenotype: is it real and is it worth targeting therapeutically? [J]. Circulation,2017,135(8):736-740.
[10] Sárk?zy M,Gáspár R,Zvara ?,et al. Chronic kidney disease induces left ventricular overexpression of the pro-hypertrophic microRNA-212[J]. Sci Rep,2019,9(1):1302.
[11] Todd N,Lai YC. Current understanding of circulating biomarkers in pulmonary hypertension due to left heart disease[J]. Front Med (Lausanne),2020,7:570016.
[12] Ueda K,Lu Q,Baur W,et al. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation[J]. Arterioscler Thromb Vasc Biol,2013,33(8):1837-1843.
[13] Shenouda SM,Widlansky ME,Chen K,et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus[J]. Circulation,2011,124(4):444-453.
[14] Florijn BW,Bijkerk R,van der Veer EP,et al. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? [J]. Cardiovasc Res,2018,114(2):210-225.
[15] Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.
[16] Gevaert AB,Boen JRA,Segers VF,et al. Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology[J]. Front Physiol,2019,10:638.
[17] Dong S,Ma W,Hao B,et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2[J]. Int J Clin Exp Pathol,2014,7(2):565-574.
[18] Ben-Nun D,Buja LM,Fuentes F. Prevention of heart failure with preserved ejection fraction (HFpEF): reexamining microRNA-21 inhibition in the era of oligonucleotide-based therapeutics[J]. Cardiovasc Pathol,2020,49:107243.
[19] Nabeebaccus A,Zheng S,Shah AM. Heart failure-potential new targets for therapy[J]. Br Med Bull,2016,119(1):99-110.
[20] Ikeda S,He A,Kong SW,et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes l[J]. Mol Cell Bio,2009 ,29(8):2193-2204.
[21] Gurha P,Abreu-Goodger C,Wang T,et al. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction[J]. Circulation,2012,125(22): 2751-2761.
[22] Chen F,Yang J,Li Y,et al. Circulating microRNAs as novel biomarkers for heart failure[J]. Hellenic J Cardiol,2018,59(4):209-214.
[23] Wong LL,Zou R,Zhou L,et al. Combining circulating microRNA and?NT-proBNP to detect and categorize?heart failure subtypes[J]. J Am Coll Cardiol,2019,73(11):1300-1313.
[24] Wong LL,Armugam A,Sepramaniam S,et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction[J]. Eur J Heart Fail,2015,17(4):393-404.
[25] Watson CJ,Gupta SK,O’Connell E,et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure[J]. Eur J Heart Fail,2015,17(4):405-415.
[26] Tsch?pe C,Birner C,B?hm M,et al. Heart failure with preserved ejection fraction: current management and future strategies: expert opinion on the behalf of the Nucleus of the "Heart Failure Working Group" of the German Society of Cardiology (DKG) [J] . Clin Res Cardiol,2018,107(1):1-19.
[27] Schmitter D,Voors AA,van der Harst P. HFpEF vs. HFrEF: can microRNAs advance the diagnosis? [J]. Eur J Heart Fail,2015,17(4):351-354.